[1] Drake R P. High-energy-density physics[M]. New York: Springer-Verlag, 2006.
[2] Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Physics of Plasmas, 2005, 12: 055503. doi: 10.1063/1.1891746
[3] Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Science, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
[4] Deng J J, Xie W P, Feng S F, et al. Initial performance of the primary test stand[J]. IEEE Trans Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154
[5] Huang Xianbin, Zhou Shaotong, Dan Jiakun, et al. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand[J]. Physics of Plasmas, 2015, 22(7): 072707. doi: 10.1063/1.4926532
[6] 孙奇志, 方东凡, 刘伟, 等. “荧光-1”实验装置物理设计[J]. 物理学报, 2013, 62:078407. (Sun Qizhi, Fang Dongfan, Liu Wei, et al. Phsical design of the "Ying-Guang 1" device[J]. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407
[7] 方东凡, 孙奇志, 贾月松, 等. “荧光-1”实验装置研制与调试[J]. 强激光与粒子束, 2017, 29:095001. (Fang Dongfan, Sun Qizhi, Jia Yuesong, et al. Development and test of the "Yingguang-l" program-discharged pulsed power device[J]. High Power Laser and Particle Beams, 2017, 29: 095001 doi: 10.11884/HPLPB201729.170077
[8] Hammer J H, Tabak M, Wilks S C, et al. High yield inertial confinement fusion target design for a Z-pinch-driven hohlraum[J]. Physics of Plasmas, 1999, 6(5): 2129-2136. doi: 10.1063/1.873464
[9] Smirnov V P. Fast liners for inertial fusion[J]. Plasma Physics and Controlled Fusion, 1991, 33(13): 1697-1714. doi: 10.1088/0741-3335/33/13/014
[10] Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
[11] Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
[12] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
[13] Slutz S A, Herrmann M C, Vesey S A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
[14] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
[15] 彭先觉, 师学明. 核能与聚变裂变混合能源堆[J]. 物理, 2010, 39(6):385-389. (Peng Xianjue, Shi Xueming. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. Physics, 2010, 39(6): 385-389
[16] 黄显宾, 邓建军, 杨礼兵, 等. “阳”加速器上的Z箍缩诊断技术[J]. 强激光与粒子束, 2010, 22(4):870-874. (Huang Xianbin, Deng Jianjun, Yang Libing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2010, 22(4): 870-874 doi: 10.3788/HPLPB20102204.0870
[17] 肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
[18] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
[19] 肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203. (Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
[20] Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches[J]. Physics of Plasmas, 2001, 8(8): 3734-3746. doi: 10.1063/1.1385373
[21] Cuneo M E, Waisman E M, Lebedev S V, et al. Characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA[J]. Physical Review E, 2005, 71: 046406. doi: 10.1103/PhysRevE.71.046406
[22] Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
[23] Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201
[24] Oreshkin V I. Thermal instability during an electrical wire explosion[J]. Physics of Plasmas, 2008, 15: 092103. doi: 10.1063/1.2966121
[25] Peterson K, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868
[26] Gof’berg S M, Velikovich A L. Suppression of Rayleigh-Taylor instability by the snowplow mechanism[J]. Physics of Fluids B, 1993, 5(4): 1164-1172. doi: 10.1063/1.860974
[27] Reinovsky R E. Pulsed power experiments in hydrodynamics and material properties[J]. IEEE Trans Plasma Science, 2000, 28(5): 1563-1570. doi: 10.1109/27.901234
[28] Sinars D B, Slutz A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z Facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
[29] Sinars D B, Campbell E M, Cuneo M E, et al. The role of magnetized liner inertial fusion as a pathway to fusion energy[J]. Journal of Fusion Energy, 2016, 35(1): 78-84. doi: 10.1007/s10894-015-0023-4
[30] 阳庆国, 黄显宾, 刘冬兵, 等. 聚龙一号装置上首次铝套筒Z箍缩X射线背照相实验[J]. 强激光与粒子束, 2016, 28:040101. (Yang Qingguo, Huang Xianbin, Liu Dongbing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2016, 28: 040101 doi: 10.11884/HPLPB201628.120101
[31] Strand O T, Berzins L V, Goosman D R, et al. Velocimetry using heterodyne techniques[R]. UCRL-CONF-206034, 2004.
[32] Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. Review of Scientific Instruments, 2010, 81: 053905. doi: 10.1063/1.3429257
[33] 汤文辉, 张若棋, 赵国民. 脉冲X射线诱导的热击波[J]. 高压物理学报, 1995, 9(2):107-111. (Tang Wenhui, Zhang Ruoqi, Zhao Guomin. Thermal shock wave induced by impulsive X-ray[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 107-111 doi: 10.11858/gywlxb.1995.02.004
[34] 彭常贤, 谭红梅, 林鹏, 等. 脉冲软X光辐射三种材料的喷射冲量实验研究[J]. 强激光与粒子束, 2003, 15(1):89-93. (Peng Changxian, Tan Hongmei, Lin Peng, et al. Experimental studies of blowoff impulse in materials irradiated by pulsed soft X-ray[J]. High Power Laser and Particle Beams, 2003, 15(1): 89-93
[35] Remo J L, Furnish M D, Lawrence R J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials[J]. Journal of Plasma Physics, 2013, 79: 121-141.
[36] Spielman R.B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ[J]. Physics of Plasmas, 1998, 5(5): 2105-2111. doi: 10.1063/1.872881
[37] Coverdale C A, Jones B, Ampleford D J, et al. K-shell X-ray sources at the Z accelerator[J]. High Energy Density Physics, 2010, 6(2): 143-152. doi: 10.1016/j.hedp.2010.01.006
[38] Bailey J E, Rochau G A, Mancini R C, et al. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas[J]. Physics of Plasmas, 2009, 16: 058101. doi: 10.1063/1.3089604
[39] Nagayama T, Bailey J E, Loisel G, et al. Control and diagnosis of temperature, density, and uniformity in X-ray heated iron/magnesium samples for opacity measurements[J]. Physics of Plasmas, 2014, 21: 056502. doi: 10.1063/1.4872324
[40] Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2015, 517(7532): 56-59. doi: 10.1038/nature14048
[41] Swanekamp. B, Weber B V, Stephanakis S J, et al. Bremsstrahlung target optimization for reflex triodes[J]. Physics of Plasmas, 2008, 15: 083105. doi: 10.1063/1.2963090
[42] Iwan D C. Computer simulations of the ring diode for Saturn[R]. SAND-85-2585, 1986.
[43] Struve K W, Joseph N R, Thomas R D, et al. Refurbishment and enhancement of the Saturn accelerator[C]//IEEE International Conference on Plasma Sciences. 2015.
[44] Murphy D P, Weber B V, Swanekamp S B, et al. High-current reflex triode research[C]//The 18th IEEE International Pulsed Power Conference. 2011.
[45] Lai Dingguo, Qiu Mengtong, Xu Qifu, et al. A two-stage series diode for intense large-area moderate pulsed X rays production[J]. Review of Scientific Instruments, 2017, 88: 013506. doi: 10.1063/1.4974102
[46] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J]. 力学进展, 2012, 42(4):206-219. (Sun Chengwei, Zhao Jianheng, Wang Guiji, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advance in Mechanics, 2012, 42(4): 206-219
[47] Davis J P, knudson M D, Deeney C, et al. Magnetically driven isentropic compression to multimegabar pressure using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
[48] Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10821-10824. doi: 10.1088/0953-8984/14/44/383
[49] Davis J P, Knudson M D. Multi-megabar measurement of the principal quasi-isentrope for tantalum[C]//AIP Conference Proceedings. 2009, 1195: 673-676.
[50] Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W[C]//AIP Conference Proceedings, 2007, 955: 1177-1180.
[51] Asay J R, Vogler T J, Ao T, et al. Dynamic yielding of single crystal Ta at strain rates of 5×105/s[J]. Journal of Applied Physics, 2011, 109(7): 073507. doi: 10.1063/1.3562178
[52] Martin M R, Lemeke R W, McBride R D, et al. Solid liner implosions on Z for producing multi-megabar, shockless compressions[J]. Physics of Plasmas, 2012, 19: 056310. doi: 10.1063/1.3694519
[53] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
[54] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展[J]. 高能量密度物理, 2020, 3(1):14-25. (Wang Guilin, Zhang Zhaohui, Sun Qizhi, et al. Progress on research of magnetically driven loading techniques using "Julong-1" device[J]. High Energy Density Physics, 2020, 3(1): 14-25
[55] De Gouveia Dal Pino E M. Astrophysical jets and outflows[J]. Advances in Space Research, 2005, 35(5): 908-924. doi: 10.1016/j.asr.2005.03.145
[56] Ryutov D, Drake R P, Kane J, et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics[J]. The Astrophysical Journal, 1999, 518(2): 821-832. doi: 10.1086/307293
[57] Ryutov D D, Drake R P, Remington B A. Criteria for scaled laboratory simulations of astrophysical MHD phenomena[J]. The Astrophysical Journal Supplement, 2000, 127(2): 465-468. doi: 10.1086/313320
[58] Bellan P M. Miniconference on astrophysical jets[J]. Physics of Plasmas, 2005, 12: 058301. doi: 10.1063/1.1900563
[59] Ciardi A, Lebedev S V, Frank A, et al. 3D MHD simulations of laboratory plasma jets[J]. Astrophysics and Space Science, 2007, 307: 17-22. doi: 10.1007/s10509-006-9215-8
[60] Suzuki-Vidal F, Lebedev S V, Bland S N, et al. Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch[J]. Physics of Plasmas, 2010, 17: 112708. doi: 10.1063/1.3504221
[61] Qiang Xu, Jiakun Dan, Wang Guilin, et al. The magnetically driven plasma jet produces a pressure of 33 GPa on PTS[J]. Physics of Plasmas, 2017, 24: 010701. doi: 10.1063/1.4974038
[62] Hamaguchi K, Yamauchi S, Koyama K. X-ray study of Herbig Ae/Be stars[J]. The Astrophysical Journal, 2005, 618(1): 360-384. doi: 10.1086/423192
[63] Nisini B, Milillo A, Saraceno P, et al. Mass loss rates from HI infrared lines in Herbig Ae/Be stars[J]. Astronomy and Astrophysics, 1995, 302: 169.
[64] Benedettini M, Nisini B, Giannini T, et al. An ISO investigation of the MWC 297 circumstellar region[J]. Astronomy and Astrophysics, 1998, 339: 159.
[65] R. Bonito, S. Orlando, Peres G, et al Generation of radiative knots in a randomly pulsed protostellar jet[J]. Astronomy and Astrophysics, 2010, 517(11): A68.
[66] Lin Munan, Liu Ming, Zhu Guanghui, et al. Field-reversed configuration formed by in-vessel θ-pinch in a tandem mirror device[J]. Review of Scientific Instruments, 2017, 88: 093505. doi: 10.1063/1.5001313
[67] Shi Pengyu, Ren Baoming, Zheng Jian, et al. Formation of field-reversed configuration using an in-vessel odd-parity rotating magnetic field antenna in a linear device[J]. Review of Scientific Instruments, 2017, 89: 103502.
[68] Liao Hui, Lin Munan, Liu Ming, et al. Translation speed measurements of hydrogen, helium, and argon field-reversed configurations in the central cell of a KMAX mirror device[J]. Plasma Science and Technology, 2019, 21: 085102. doi: 10.1088/2058-6272/ab19e8
[69] Lin M, Zhan X, Zhou H, et al. High-voltage and high-current crowbar system based on pseudospark switches: from system design to verification[J]. Journal of Instrumentation, 2020, 15: P03029. doi: 10.1088/1748-0221/15/03/P03029
[70] Zhang Ming, Xuan Jingjing, Yang Yong, et al. Design of high voltage pulsed power supply for HFRC[J]. IEEE Trans Plasma Science, 2020, 48(6): 1688-1692.
[71] Zhao Xiaoming, Jia Yuesong. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration[J]. Review of Scientific Instruments, 2014, 85: 053510. doi: 10.1063/1.4875584
[72] Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of field reversed configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
[73] 方东凡, 秦卫东, 孙奇志, 等. 夹断开关对“荧光-1”实验装置电流特性的影响[J]. 强激光与粒子束, 2018, 30:055001. (Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the “Yingguang-1” device[J]. High Power Laser and Particle Beams, 2018, 30: 055001 doi: 10.11884/HPLPB201830.170385