[1] Keefe D. Inertial confinement fusion[J]. Annual Review of Nuclear and Particle Science, 2003, 32(1): 391-441.
[2] Yamanaka C. Inertial confinement fusion[J]. Physica Scripta, 2007, 1982(T2B): 486.
[3] Yamanaka C. Inertial confinement fusion: The quest for ignition and energy gain using indirect drive[J]. Nuclear Fusion, 2002, 39(6): 825.
[4] 江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展[J]. 中国科学: G辑, 2009, 39(11):1571. (Jiang Shaoen, Ding Yongkun, Miao Wenyong, et al. Recent progress of inertial confinement fusion experiments in China[J]. Sci China Ser G, 2009, 39(11): 1571
[5] 贺贤土. 惯性约束聚变研究进展和展望[J]. 核科学与工程, 2000(3):57-60. (He Xiantu. Progress and prospects for inertial confinement fusion research[J]. Chinese Journal of Nuclear Science and Engineering, 2000(3): 57-60
[6] Moses E I. The National Ignition Campaign: status and progress[J]. Nuclear Fusion, 2013, 53: 104020. doi: 10.1088/0029-5515/53/10/104020
[7] 丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081. (Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress of physical experiment and target diagnostics in Research Center of Laser Fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
[8] 温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.

Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012
[9] 李三伟, 杨冬, 李欣, 等. 我国激光间接驱动黑腔物理实验研究进展[J]. 中国科学: G辑, 2018, 48:065202. (Li Sanwei, Yang Dong, Li Xin, et al. Recent progress of hohlraum physics experiments in indirect-driven ICF in China[J]. Sci China Ser G, 2018, 48: 065202
[10] Pak A, Dewald E, Milovich J, et al. Tuning the early-time radiation flux symmetry in indirect drive implosion experiments at the National Ignition Facility[C]//55th Annual Meeting of the APS Division of Plasma Physics. 2013.
[11] 陈伯伦, 黄天暄, 江少恩, 等. 再发射技术测量SGⅡ黑腔靶早期对称性[J]. 强激光与粒子束, 2013, 25(2):385-388. (Chen Bolun, Huang Tianxuan, Jiang Shaoen, et al. Re-emission technique for early time hohlraum radiation symmetry measurements on SGⅡfacility[J]. High Power Laser and Particle Beams, 2013, 25(2): 385-388 doi: 10.3788/HPLPB20132502.0385
[12] Benedetti L B, Nagel S R, Izumi N, et al. Quantitative analysis of X-ray self emission in ICF implosions using orthogonal images[C]//58th Annual Meeting of APS Division of Plasma Physics. 2016.
[13] 袁永腾, 侯立飞, 涂绍勇, 等. X光能点、放大倍率及针孔尺寸对空间分辨的影响[J]. 强激光与粒子束, 2014, 26:022001. (Yuan Yongteng, Hou Lifei, Tu Shaoyong, et al. Effect of X-ray wavelength, pinhole aperture and magnification on spatial resolution[J]. High Power Laser and Particle Beams, 2014, 26: 022001 doi: 10.3788/HPLPB20142602.22001
[14] Gotchev O V, Jaanimagi P A, Knauer J P, et al. High-throughput, high-resolution Kirkpatrick-Baez microscope for advanced streaked imaging of ICF experiments on Omega[J]. Review of Scientific Instruments, 2003, 74(3): 2178-2181. doi: 10.1063/1.1537864
[15] 穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20:409-412. (Mu Baozhong, Yi Shengzhen. Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF[J]. High Power Laser and Particle Beams, 2008, 20: 409-412
[16] Xie Qing, Mu Baozhong, Li Yaran, et al. Design of KB complex type microscope for ICF X-ray diagnostics[C]//Proc of SPIE. 2016: 99630X.
[17] Pickworth L, Bradley D, Pardini T, et al. A Kirkpatrick-Baez microscope for core implosion imaging at NIF[C]//APS Meeting. 2013.
[18] Yi Shengzhen, Mu Baozhong, Wang Xin, et al. A four-channel multilayer KB microscope for high-resolution 8-keV X-ray imaging in laser-plasma diagnostics[J]. Chinese Optics Letters, 2014, 12: 013401. doi: 10.3788/COL201412.013401
[19] Yi Shengzhen, Zhang Zhe, Huang Qiushi, et al. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 2016, 87: 103501. doi: 10.1063/1.4963702
[20] Troussel P, Munsch P, Ferme J. Microfocusing between 1 and 5 keV with Wolter-type optics[C]//Proc of SPIE. 1999, 3773: 60-69.
[21] 李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30:062002. (Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002 doi: 10.11884/HPLPB201830.170440
[22] McCarville T, Fulkerson S, Booth R, et al. Gated X-ray intensifier for large format simultaneous imaging[J]. Review of Scientific Instruments, 2005, 76: 103501. doi: 10.1063/1.2090328
[23] 袁铮, 杨志文, 李晋, 等. 基于光电子脉冲展宽的高时间分辨成像技术[J]. 强激光与粒子束, 2014, 26:052007. (Yuan Zheng, Yang Zhiwen, Li Jin, et al. Ultrafast time resolution 2D imaging technology based on photoelectron pulse quasi-linearly dilation[J]. High Power Laser and Particle Beams, 2014, 26: 052007 doi: 10.11884/HPLPB201426.052007
[24] Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
[25] Nagel S R, Ayers M J, Felker B, et al. Performance measurements of the DIXI (dilation X-ray imager) photocathode using a laser produced X-ray source[C]// Proc of SPIE. 2012: 85050H.
[26] Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
[27] Bai Yanli, Long Jinghua, Liu Jinyuan, et al. Demonstration of 11-ps exposure time of a framing camera using pulse-dilation technology and a magnetic lens[J]. Optical Engineering, 2015, 54: 124103. doi: 10.1117/1.OE.54.12.124103
[28] Cai Houzhi, Fu Wenyong, Bai Yanli, et al. Simulation of a dilation X-ray framing camera[J]. Journal of Electron Imaging, 2017, 26: 043003. doi: 10.1117/1.JEI.26.4.043003
[29] Yi S, Assoufid L, Takacs P, et al. Large-field high-energy KB microscope with a periodic multilayer[C]//Proc of SPIE. 2010: 78010C.
[30] 刘利锋, 肖沙里, 钱家渝. 球面晶体背光成像系统模拟[J]. 应用光学, 2016, 37(3):332-336. (Liu Lifeng, Xiao Shali, Qian Jiayu, et al. Simulation of backlight imaging system by spherically bent crystal[J]. Journal of Applied Optics, 2016, 37(3): 332-336 doi: 10.5768/JAO201637.0301002
[31] Hagmann C, Izumi N, Bell P, et al. Modeling of neutron induced backgrounds in X-ray framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E514. doi: 10.1063/1.3460454
[32] Izumi N, Hagmann C, Stone G, et al. Experimental study of neutron-induced background noise on gated X-ray framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E515. doi: 10.1063/1.3478636
[33] Jaanimagi P, Boni R, Keck R. Neutron-induced background in charge-coupled device detectors[J]. Review of Scientific Instruments, 2001, 72(1): 801-804. doi: 10.1063/1.1319871
[34] Khan S, Bell P, Bradley D, et al. Measuring X-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)[C]//Proc of SPIE. 2012: 850505.
[35] Rymell L, Hertz H. Debris elimination in a droplet-target laser-plasma soft X-ray source[J]. Review of Scientific Instruments, 1995, 66(10): 4916. doi: 10.1063/1.1146174
[36] Tobin M, Andrew J, Eder D, et al. Characterizing shrapnel and debris produced in high power laser experiments[C]//The 3rd International Conference on Inertial Fusion Sciences and Applications. 2003.
[37] Miller M C, Celeste J, Stoyer M A. Debris characterization diagnostic for the NIF[J]. Review of Scientific Instruments, 2001, 72(1): 537-539. doi: 10.1063/1.1310587
[38] Eder D, Koniges A, Landen O, et al. Debris and shrapnel mitigation procedure for NIF experiments[J]. Journal of Physics Conference, 2008, 112: 032023. doi: 10.1088/1742-6596/112/3/032023
[39] Eder D, Koniges A, Bonneau F, et al. Simulation of shrapnel to aid in the design of NIF/LMJ target-diagnostic configurations[C]//The 3rd International Conference on Inertial Fusion Sciences and Applications. 2003.
[40] Trosseille C, Aubert D, Auger L, et al. Overview of the ARGOS X-ray framing camera for Laser Megajoule[J]. Review of Scientific Instruments, 2014, 85: 11D620. doi: 10.1063/1.4891057
[41] Oertel J, Aragonez R, Archuleta T, et al. Gated X-ray detector for the National Ignition Facility[J]. Review of Scientific Instruments, 2006, 77: 10E308. doi: 10.1063/1.2227439
[42] Kimbrough J R, Bell P M, Bradley D K, et al. Standard design for National Ignition Facility X-ray streak and framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E530. doi: 10.1063/1.3496990
[43] Kimbrough J R, Bell P M, Christianson G B, et al. National Ignition Facility core X-ray streak camera[J]. Review of Scientific Instruments, 2001, 72: 748-750. doi: 10.1063/1.1318262
[44] 李晋, 胡昕, 樊龙, 等. X射线条纹相机阴极制备及其绝对标定[J]. 强激光与粒子束, 2015, 27:082003. (Li Jin, Hu Xin, Fan Long, et al. Fabrication and absolute calibration of X-ray streak camera cathode[J]. High Power Laser and Particle Beams, 2015, 27: 082003 doi: 10.11884/HPLPB201527.082003
[45] 曹柱荣, 刘慎业, 张海鹰, 等. 神光III核心X射线分幅相机[J]. 光子学报, 2009, 38:1881-1885. (Cao Zhurong, Liu Shenye, Zhang Haiying, et al. SHEN-GUANG III core X-ray framing cameras[J]. Acta Photonica Sinica, 2009, 38: 1881-1885
[46] Wang Qiangqiang, Deng Bo, Cao Zhurong, et al. Development of a gated X-ray imager with multiple views and spectral selectivity for observing plasma evolution in hohlraum[J]. Review of Scientific Instruments, 2019, 90: 073301. doi: 10.1063/1.5066319
[47] 杨文正, 白永林, 秦君军, 等. 软X射线皮秒分幅相机的增益压窄效应[J]. 强激光与粒子束, 2009, 21(5):755-760. (Yang Wenzheng, Bai Yongling, Qin Junjun, et al. Gain narrowing effect of soft X-ray picoseconds framing camera[J]. High Power Laser and Particle Beams, 2009, 21(5): 755-760
[48] Yang Wenzheng, Bai Yonglin, Liu Baiyu, et al. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade[J]. Nuclear Instruments and Methods in Physics Research Section A, 2009, 608: 291-296. doi: 10.1016/j.nima.2009.06.110
[49] Cao Zhurong, Jin Fengtao, Dong Jianjun, et al. Soft X-ray low-pass filter with a square-pore microchannel plate[J]. Optics Letter, 2013, 38: 1509-1511. doi: 10.1364/OL.38.001509
[50] 曹柱荣, 董建军, 杨正华, 等. 一种透射式软X光带通方法研究[J]. 物理学报, 2013, 62:045205. (Cao Zhurong, Dong Jianjun, Yang Zhenghua, et al. A new method of soft X-ray transmission band-pass[J]. Acta Physica Sinica, 2013, 62: 045205 doi: 10.7498/aps.62.045205
[51] 袁铮, 曹柱荣, 朱效立, 等. 一种X射线成像型平响应低通滤波技术[J]. 光学学报, 2013, 62:045205. (Yuan Zheng, Cao Zhurong, Zhu Xiaoli, et al. A technology of X-ray imaging flat-response low-pass filter[J]. Acta Optica Sinica, 2013, 62: 045205
[52] Ayers M J, Nagel S R, Felker B, et al. Design and implementation of Dilation X-ray Imager for NIF “DIXI”[C]//Proc of SPIE.2013: 88500C.
[53] Carpenter A C, Dayton M, Kimbrough J, et al. Single line of sight CMOS radiation tolerant camera system design overview[C]// Proc of SPIE. 2016: 99660H.
[54] Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
[55] Nagel S R, Carpenter A C, Park J, et al. The dilation aided single-line-of-sight X-ray framing camera for the National Ignition Facility: Characterization and fielding[J]. Review of Scientific Instruments, 2018, 89: 10G125. doi: 10.1063/1.5038671