[1] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

Ding Yaogen. Desgin, manufacture and application of high power klystron. Beijing: National Defence Industry Press, 2010
[2] Kazakov S. High-power RF sources and components for linear colliders[R]. Fermi National Accelerator Laboratory, 2007, 15.
[3] 丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. Technical status and latest progress of high power klystron[J]. Vacuum Electronics, 2020(1): 1-25
[4] 朱小芳, 胡权, 胡玉禄, 等. 大功率同轴与波导窗的结构与设计原理综述[J]. 真空科学与技术学报, 2016, 36(3):340-350. (Zhu Xiaofang, Hu Quan, Hu Yulu, et al. A review of the structure and design principle of high-power coaxial and waveguide windows[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(3): 340-350
[5] Bohlen H P. Advanced high-power microwave vacuum electron device development[C]//Proceedings of the Particle Accelerator Conference. 1999: 445-449.
[6] 储开荣, 窦钺, 盛兴, 等. X波段高峰值功率TE01模式圆波导行波窗的研制[J]. 真空电子技术, 2017(6):31-35. (Chu Kairong, Dou Yue, Sheng Xing, et al. Development of X-band peak power TE01 mode circular waveguide traveling window[J]. Vacuum Electronics, 2017(6): 31-35
[7] 储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32:103012. (Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50 MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012
[8] Miura A, Matsumoto H. Development of an S-band RF window for linear colliders[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 334(2/3): 341-352.
[9] Michizono S, Saito Y, Fukuda S, et al. RF windows used at S-band pulsed klystrons in the KEK linac[J]. Vacuum, 1996, 47(6/8): 625-628.
[10] 张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
[11] Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60: 235-239. doi: 10.1016/S0042-207X(00)00380-8
[12] Sakai T, Sato I, Hayakawa K, et al, S-band klystron for long pulse operation[C]//Proceedings of International Linear Accelerator Conference. 2002. 712-714.
[13] Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
[14] Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans Plasma Science, 1998, 26(3): 296-303. doi: 10.1109/27.700757
[15] Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. Journal of Applied Physics, 1999, 86(3): 1724-1728. doi: 10.1063/1.370953
[16] 张雪, 王勇, 范俊杰, 等. TM11模对高功率盒形窗次级电子倍增效应影响的研究[J]. 真空电子技术, 2014(04):19-23. (Zhang Xue, Wang Yong, Fan Junjie, et al. Research on the influence of TM11 on secondary electron multiplication effect of high power box-shaped windows[J]. Vacuum Electronics, 2014(04): 19-23 doi: 10.3969/j.issn.1002-8935.2014.04.006
[17] Zhu Xiaofang, Hao Yiliang, Hu Yulu, et al. Scattering matrix analysis of a high-power pill-box-type window without ghost mode[C]//International Vacuum Electronics Conference. 2017.
[18] 张志强, 罗积润, 张兆传. S波段大功率宽带速调管输出窗鬼模振荡的抑制[J]. 电子与信息学报, 2017, 39(3):731-736. (Zhang Zhiqiang, Luo Jirun, Zhang Zhaochuan. Suppression of ghost mode oscillation in output window of S-band high power broadband klystron[J]. Journal of Electronics and Information Technology, 2017, 39(3): 731-736
[19] Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical and experimental study of the modified pill-box window for the 220-GHz folded waveguide BWO[J]. IEEE Trans Plasma Science, 2014, 42(10): 3349-3357. doi: 10.1109/TPS.2014.2349919
[20] Hu Peng, Lei Wenqiang, Jiang Yi, et al. The vacuum window for 0.34-THz folded waveguide traveling wave tube[C]//International Vacuum Electronics Conference. 2019.
[21] Yang Tongbin, Lu Dun, Fu Wenjie, et al. A broadband low-leoss W-band pill-box window[C]//International Vacuum Electronics Conference. 2019.
[22] Otake Y, Tokumoto S, Kazakov S Y, et al. High-power tests of X-band RF windows at KEK[C]//Proceedings of the Third Workshop on Pulsed RF Sources for Linear Colliders. 1996, 30: 315-322.
[23] Zhang Xue, Wang Yong, Fan Junjie, et al. Development of new pill-box window for S-band high power klystron[J]. Journal of Electronics, 2014, 31(1): 78-84.
[24] Zhang Xue, Tang Haobei, Chen Xuyuan, et al. Multipactor discharge in circular waveguide window[J]. Physics of Plasmas, 2020, 27: 043504. doi: 10.1063/1.5142341
[25] Otake Y, Tokumoto S, Mizuno H. Design and high-power test of a TE11-mode X-band RF window with taper transitions[C]//Proceedings of the Particle Accelerator Conference. 1995: 1590-1592.
[26] 柴媛媛, 刘庆想, 张健穹, 等. X波段新型圆波导输出窗的研究[J]. 微波学报, 2014(s1):525-527. (Chai Yuanyuan, Liu Qingxiang, Zhang Jianqiong, et al. Research on a new X-band circular waveguide output window[J]. Journal of Microwaves, 2014(s1): 525-527
[27] Kazakov S Y. Increased power RF-window[C]//BINP Preprint. 1992.
[28] Michizono S, Saito Y, Mizuno H, et al. High-power test of pill-box and TW-in-ceramic type S-band windows[C]//Proceedings of the 17th International Linac Conference. 1994: 21-26.
[29] Buyanova M N, Nechaev V E, Semenov V E. Multipactor discharge on a dielectric surface in the field of circularly polarized plane wave[J]. Radio physics and Quantum Electron, 2007, 50(10/11): 893-907.
[30] Fowkes W, Callin R S, Tantawi S G, et al. Reduced field TE01/X-band travelling wave window[C]//Proceedings of the Particle Accelerator Conference 1995: 1587-1589.
[31] Fowkes W R, Jongewaard E N, Callin R S, et al. Design considerations for very high power RF windows at X-band[C]//Proceedings of the 19th International Linear Accelerator Conference: 1998: 243.
[32] Fowkes W R, Callin R S, Jongewaard E N, et al. Large diameter reduced field TE01 traveling wave window for X-band[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999.
[33] Kazakov S. New compact TE10–TE01 mode converter and TE01-TE02 window[R]. ISG-8, 24-28, 2002.
[34] Michizono S, Matsumoto T, Nakao K, et al. Development of C-band high-power mix-mode RF windows[C]//Proceedings of Linear Accelerator Conference. 2004.
[35] Kazakov S Y. A New Traveling-wave mixed-mode RF window with a low electric field in ceramic-metal brazing area[J]. KEK Preprint, 1998-8: 98-120.
[36] Tokumoto S, Chin Y H, Mizuno H, et al. High power testing results of the X-band mixed-mode RF windows for linear colliders[C]//Linear Accelerator Conference. 2000: 21-25.
[37] Kazakov S, Higo T, Matsumoto S. TE11/TM11 mixed-mode wave guide valve at X-band[C]//Proceedings of IPAC. 2010.
[38] Yamaguchi S, Matsumoto S, Tokumoto S, et al. High-power test results of Kazakov RF window[C]//Linear Accelerator Conferenc. 1999.
[39] Joo Y, Lee B J, Kong H S, et al. Development of new S-band RF window for stable high-power operation in linear accelerator RF system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 1-8.
[40] 常超. 高功率微波系统中的击穿机理[J]. 北京: 科学出版社, 2015.

Chang Chao. Breakdown mechanism in high power microwave system[J]. Beijing: Science Press, 2015
[41] Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657.
[42] Michizono S. TiN film coatings on alumina radio frequency windows[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1180-1184.
[43] 焦晓静, 苏党帅, 王茜. TiN镀层对射频器件表面二次电子倍增的抑制作用[J]. 微波学报, 2012(s1):282-287. (Jiao Xiaojing, Su Dangshuai, Wang Qian. Suppression of surface multipactor in RF devices by TiN coating[J]. Journal of Microwaves, 2012(s1): 282-287
[44] Peng Zhen, Chen Gen, Zhao Yanping, et al. Investigation of TiN film on an RF ceramic window by atomic layer deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38: 052401.
[45] 刘湘龙, 李晓云, 杨建, 等. 真空电绝缘性能的影响[J]. 人工晶体学报, 2014, 43(3):857-861. (Liu Xianglong, Li Xiaoyun, Yang Jian, et al. Effect of Chromium doping on vacuum electrical insulation performance of alumina ceramics[J]. Journal of Synthetic Crystals, 2014, 43(3): 857-861
[46] Huo Yankun, Liu Wenyuan, Guo Yuewen, et al. Molecule self-assembly on alumina ceramic insulator to enhance its vacuum surface voltage withstand strength[J]. Journal of Applied Physics, 2020, 127: 243304. doi: 10.1063/5.0006233
[47] Chang Chao, Liu Guozhi, Huang Haojie, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Physics of Plasmas, 2009, 16: 083501. doi: 10.1063/1.3200900
[48] Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Trans Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
[49] Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface[J]. Journal of Applied Physics, 2015, 117: 053302. doi: 10.1063/1.4907683
[50] Zhang Xue, Wang Yong, Fan Junjie, et al. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon[J]. Physics of Plasmas, 2014, 21: 092101. doi: 10.1063/1.4894222
[51] Chang Chao, Liu Yansheng, Verboncoeur J, et al. The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode[J]. Applied Physics Letters, 2015, 106: 014102. doi: 10.1063/1.4905280
[52] Chang Chao, Verboncoeur J, Wei Fuli, et al. Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(1): 375-381. doi: 10.1109/TDEI.2016.006047
[53] 田志英, 尚阿曼, 张巨先. 氧化铝陶瓷表面状态对其真空耐压性能的影响[J]. 真空科学与技术学报, 2015, 35(10):1169-1173. (Tian Zhiying, Shang Aman, Zhang Juxian. Effect of surface state of alumina ceramic on its vacuum compressive resistance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1169-1173
[54] Jordan N M, Lau Y Y, French D M, et al. Electric field and electron orbits near a triple point[J]. Journal of Applied Physics, 2007, 102: 033301. doi: 10.1063/1.2764211
[55] Foster J, Thomas M, Neuber A A. Variation in the statistical and formative time lags of high power microwave surface flashover utilizing a superimposed dc electric field[J]. Journal of Applied Physics, 2009, 106: 063310. doi: 10.1063/1.3226866
[56] Ivanov O A, Lobaev M A, Isaev V A, et al. Suppressing and initiation of multipactor discharge on a dielectric by an external dc bias[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 022004. doi: 10.1103/PhysRevSTAB.13.022004
[57] Zhang Jianwei, Luo Wei, Wang Hongguang, et al. Suppression of high-power microwave window breakdown by the sweeping-out-electron effect with an external dc bias electric field[J]. Physics of Plasmas, 2019, 26: 123503. doi: 10.1063/1.5123411
[58] Valfells A, Ang L K, Lau Y Y, et al. Effects of an external magnetic field, and of oblique radio-frequency electric fields on multipactor discharge on a dielectric[J]. Physics of Plasmas, 2000, 7(2): 750. doi: 10.1063/1.873861
[59] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Suppression of high-power microwave dielectric multipactor by resonant magnetic field[J]. Applied Physics Letters, 2010, 96: 111502. doi: 10.1063/1.3360853
[60] Zhang Xue, Wang Yong, Fan Junjie. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon[J]. Physics of Plasmas, 2015, 22: 022110. doi: 10.1063/1.4907248
[61] Semenov V, Kryazhev A, Anderson D, et al. Multipactor suppression in amplitude modulated radio frequency fields[J]. Physics of Plasmas, 2001, 8(11): 5034-5039. doi: 10.1063/1.1410980
[62] Anza S, Mattes M, Vicente C, et al. Multipactor theory for multicarrier signals[J]. Physics of Plasmas, 2011, 18: 032105. doi: 10.1063/1.3561821
[63] Rice S A, Verboncoeur J P. Migration of multipactor trajectories via higher-order mode perturbation[J]. IEEE Trans Plasma Science, 2017, 45: 1739-1745. doi: 10.1109/TPS.2017.2704522
[64] Iqbal A, Verboncoeur J, Zhang P. Multipactor susceptibility on a dielectric with two carrier frequencies[J]. Physics of Plasmas, 2018, 25: 043501. doi: 10.1063/1.5024365
[65] Iqbal A, Wong P Y, Verboncoeur J P, et al. Frequency-domain analysis of single-surface multipactor discharge with single- and dual-tone RF electric fields[J]. IEEE Trans Plasma Science, 2020, 48(6): 1950-1958. doi: 10.1109/TPS.2020.2978785
[66] Wen D Q, Iqbal A, Zhang P, et al. Suppression of single-surface multipactor discharges due to non-sinusoidal transverse electric field[J]. Physics of Plasmas, 2019, 26: 093503. doi: 10.1063/1.5111734