[1] Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2006, 307: 269-272.
[2] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503
[3] Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. J Appl Phys, 2013, 114: 023513. doi: 10.1063/1.4813091
[4] Eggert J H, Smith R F, Swift D C, et al. Ramp compression of tantalum to 330 GPa[J]. High Pressure Res, 2015, 35: 339-354. doi: 10.1080/08957959.2015.1071361
[5] Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6: 984-987. doi: 10.1038/nphys1790
[6] Dong Q L, Wang S J, Lu Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Phys Rev Lett, 2012, 108: 215001. doi: 10.1103/PhysRevLett.108.215001
[7] Yaakobi B, Marshall F J, Boehly T R, et al. Extended X-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America B-Optical Physics, 2003, 20: 238-245. doi: 10.1364/JOSAB.20.000238
[8] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504.
[9] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11: 2688-2695. doi: 10.1063/1.1646673
[10] Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005, 95: 075501.
[11] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703.
[12] Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703.
[13] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Phys Rev Lett, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501
[14] Coppari F, Thorn D B, Kemp G E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility[J]. The Review of Scientific Instruments, 2017, 88: 083907. doi: 10.1063/1.4999649
[15] Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
[16] Xue Q X, Wang Z B, Jiang S E, et al. Characteristic method for isentropic compression simulation[J]. Aip Adv, 2014, 4: 057127. doi: 10.1063/1.4880039
[17] Teo B K. EXAFS basic principles and data-analysis [M]. Berlin Heidelberg: Springer, 1986.
[18] Sevillano E, Meuth H, Rehr J J. Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals[J]. Physical Review B, 1979, 20: 4908-4911. doi: 10.1103/PhysRevB.20.4908
[19] More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059-3078. doi: 10.1063/1.866963