Design and simulation for S-band split-cavity oscillator
-
摘要: 通过粒子模拟的方法设计了分离腔振荡器(SCO),并建立了基于爆炸发射的阴极模型,对带有真实二极管结构的SCO进行了整体的粒子模拟研究。典型的数值模拟结果为:在二极管电压为495 kV,电流为3.93 kA时,输出高功率微波的功率为640 MW,微波频率为2.85 GHz,功率效率为33.0%。同时,还研究了二极管输入电压幅度及波形、阴-阳极间距、阴极半径等参数对SCO输出高功率微波特性的影响,初步研究结果表明:除了栅网的通过率,SCO对二极管阻抗、阴极半径等参数也比较敏感,对应一定的二极管阻抗,需有一个最佳的电压值与之匹配;三角波电压波形会明显降低SCO的功率效率。Abstract: By resorting to numerical simulation, an S-band split-cavity oscillator (SCO) is designed. The cathode model of explosive emission is built, and the SCO with a real diode is simulated. The typical simulation results are that when the electron beam voltage is 495 kV and the current is about 3.93 kA, an SCO can generate about 640 MW of HPM with a frequency of 2.85 GHz. The power efficiency is about 33.0%. At the same time, we also investigate the influence of the input voltage amplitude and its waveform, the anode-cathode gap and the cathode radius on the output high power microwave of the SCO. The preliminary results show that besides the rate of the grid, the diode impedance and the cathode radius have obvious influence on the output microwave of the SCO, the diode impedance is needed to match the voltage, and the triangle voltage will decrease the power efficiency of the SCO obviously.
-
Key words:
- split-cavity oscillator /
- SCO /
- numerical simulation /
- high power microwave
点击查看大图
计量
- 文章访问数: 922
- HTML全文浏览量: 168
- PDF下载量: 556
- 被引次数: 0