Architecture design of the transport-burnup coupling system based on MCMG-Ⅱ and STEP1.0
-
摘要: 实现燃耗过程的精细化计算需要开发新型输运-燃耗耦合计算系统,系统中采用了三维多群中子输运蒙特卡罗程序MCMG-Ⅱ和基于回溯算法的多群点燃耗计算程序STEP1.0。燃耗与输运程序之间的耦合需要考虑能谱、总源强、反应率统计、初始核密度及其变化、裂变产物核素等信息。耦合系统采用直译式脚本语言Python来实现,可以充分利用其强大的文本处理功能和直译式的特点,以准确、便捷地将这些数据在程序之间进行自动转换,并根据总功率、辐照时间、步长选择等参数自动完成输运-燃耗耦合的分步计算和结果的图形化处理,从而实现整个系统的无缝连接。在耦合系统的软件架构设计中采用分层与封装策略,降低了开发难度,提高系统的可移植性和可扩展性。耦合系统能够更为精细地考虑几何形状、能谱的变化、辐照时间等因素,自动进行精细化模拟计算。Abstract: The three dimension multi-group neutron transport Monte-Carlo program MCMG-Ⅱ and the multi-group point burnup program STEP1.0 based on linear chain method are adopted in the transport-burnup coupling system. The coupling information between the burnup and transport program includes neutron spectrum, source strength, reaction rates, initial nuclide density and its variation and the fission products. The interpreted script language Python is used to implement the coupling system. The coupling information can be transferred accurately and smoothly between the programs by its powerful text processing functions. It can also accomplish the step by step transport-burnup calculations automatically according to the total power, radiation time and timing step numbers with its interpreted, interactive characters and perform the graphic processing of the results. The encapsulation and partitioning strategy has been used in the architecture design of the system. The coupling system can do the high fidelity burnup calculations with more comprehensive reference to the factors such as geometry, neutron spectrum and radiation time automatically.
-
Key words:
- depletion calculation /
- coupling /
- Python /
- architecture design /
- encapsulation and partitioning
点击查看大图
计量
- 文章访问数: 1175
- HTML全文浏览量: 227
- PDF下载量: 207
- 被引次数: 0