Digital power supplies based on experimental physics and industrial control system
-
摘要: 设计了一个基于实验物理及工业控制系统(EPICS)实时测控的伺服电源控制器,并将其插入现有脉冲电源测试。该电源控制器采用死区时间调制(DTM)技术伺服跟踪外部控制信号以连续调节所需输出电流,这可确保开关管工作在近似零电流关断的状态下, 开关损耗小,电源效率高。对该电源及其控制器原理进行了介绍,对DTM法进行了理论分析与研究,并通过Matlab仿真和实验验证了其原理的正确性和可行性。
-
关键词:
- 数字脉冲电源控制器 /
- EPICS /
- 死区时间调制法 /
- Tokamak电源技术 /
- Matlab仿真
Abstract: Based on the experimental physics and industrial control system (EPICS), a servo power controller is designed to be inserted into the existing power supply for testing its function of measurement and control in real time. The power supply controller uses dead time modulation (DTM) technology to adjust the output current by tracking the external control signal. Zero current switching (ZCS) can work under DTM, thus the switching loss can be reduced and the power efficiency can be greatly improved under high frequencies. In this paper, the principle of the power supply and its controller are introduced, and the DTM method is studied and verified by Matlab simulation and experiment for developing control technology of Tokamak power supplier. -
表 1 电源变压器参数
Table 1. Parameters of power supply transformer
Lδ/μH Lm/ mH Ct /nF L0/μH 6.18 1.597 6.25 0.1 -
[1] Li Ge. The inductance of compressed plasma[J]. Nuclear Fusion, 2015, 55: 033009. doi: 10.1088/0029-5515/55/3/033009 [2] Li Ge. High-gain high-field fusion plasma[J]. Scientific Reports, 2015, 5: 015790. [3] 刘勇, 何湘宁, 张仲超. 脉冲密度调制串联谐振型塑料薄膜表面处理电源的研制[J]. 中国电机工程学报, 2005, 25(16): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200516030.htmLiu Yong, He Xiangning, Zhang Zhongchao. Design of pulse density modulated series resonant inverter for plastic film surface treater. Proceedings of the CSEE, 2005, 25(16): 158-162 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200516030.htm [4] Vicente E, Esteban S-K, José J, et al. Improving the efficiency of IGBT series-resonant inverters using pulse density modulation[J]. IEEE Trans Industrial Electronics, 2011, 58(3): 979-987. doi: 10.1109/TIE.2010.2049706 [5] Kolar J W, Zach F C, Casanellas F. Losses in PWM inverters using IGBTs[J]. IEE Proceedings-Electric Power Applications, 1995, 142(4): 285-288. [6] Li Ge, Zhou Yingui, Wang Haitian, et al. Compact power supplies for Tokamak heating[J]. IEEE Trans Dielectrics and Electrical Insulation, 2012, 19(1): 233-238. doi: 10.1109/TDEI.2012.6148523 [7] 李格, 曹亮, 等. 电除尘器用高频高压脉冲数控电源[J]. 高电压技术, 2009, 35(7): 1695-1699.Geng Tao, Li Ge, Cao Liang, et al. Digital high-frequency high-voltage pulse power supply for electrostatic precipitators. 2005, 35(7): 1695-1699 [8] 苏建仓, 王利民, 丁永忠, 等. 串联谐振充电电源分析及设计[J]. 强激光与粒子束, 2004, 16(12): 1611-1614. http://www.hplpb.com.cn/article/id/547Su Jiancang, Wang Limin, Ding Yongzhong, et al. Analysis and design of series resonant charging power supply. High Power Laser and Particle Beams, 2004, 16(12): 1611-1614 http://www.hplpb.com.cn/article/id/547 [9] 尚雷, 王相綦, 裴元吉, 等. 新型软开关高压脉冲电容恒流充电技术分析[J]. 强激光与粒子束, 2001, 13(2): 241-244. http://www.hplpb.com.cn/article/id/1562Shang Lei, Wang Xiangqi, Pei Yuanji, et al. Analysis of new soft switch high-voltage pulse constant current capacitor charging. High Power Laser and Particle Beams, 2001, 13(2): 241-244 http://www.hplpb.com.cn/article/id/1562 [10] 潘泽跃, 程健, 陈园园. 基于FPGA的脉冲电源及其控制系统设计[J]. 强激光与粒子束, 2015, 27: 095004. doi: 10.11884/HPLPB201527.095004Pan Zeyue, Cheng Jian, Chen Yuanyuan. Design of pulse power supply and control system based on FPGA. High Power Laser and Particle Beams, 27: 095004 doi: 10.11884/HPLPB201527.095004 [11] Liyu A, Blokland W, Thompson D. Labview library to epics channel access[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 3233-3234. [12] 何诗英, 黄连生, 高格, 等. 实验物理和工业控制系统在极向场控制系统中的应用[J]. 强激光与粒子束, 2017, 29: 026001. doi: 10.11884/HPLPB201729.160436He Shiyin, Huang Liansheng, Gao Ge, et al. Application of experimental physics and industrial control system in poloidal field power supply control system. High Power Laser and Particle Beams, 2017, 29: 026001 doi: 10.11884/HPLPB201729.160436 [13] Kutkut N H, Divan D M, Novotny D W, et al. Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging[J]. IEEE Trans Power Electronics, 1998, 13(1): 169-178. [14] Slemon G R. Magnetoelectric devices: Transducers, transformers and machines[M]. New York: John Wiley and Sons, 1966: 185. [15] Qu Xiaohui, Jing Yanyan, Han Hongdou, et al. Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Trans Power Electronics, 2017, 32(1): 394-405.