Design principle and performance of RIXS spectrometer
-
摘要: 共振非弹性散射(RIXS)是一种研究分子、材料的电子结构的X射线光谱技术,其对光源、光谱仪都有着极为苛刻的要求。掌握先进RIXS光谱仪设计思想、使用方法、性能等对未来研究均具有重要意义。通过探究其设计思想,从光程函数理论方式出发并计算变间距光栅参数,逐一分析各像差项对最终成像结果影响; 开发可见激光的非接触式测量方式测量电机编码与光谱仪部件角度关系,并验证该方式的有效性; 在同步辐射实验站直接使用同步辐射X射线,对光谱仪成像分辨率进行标定,掌握光谱仪工作性能; 最终将SHADOW模拟数据与实际探测数据进行对比,表明光谱仪安装调试满足设计及实验要求。Abstract: RIXS, Resonant Inelastic X-ray Scattering, is an x-ray spectroscopy technique used to investigate the electronic structure of molecules and materials. The requirement of it for source and spectrometer is extremely strict. Mastering its design idea, application method, performance, and so on is of great significance for future research. Through analyzing the design ideas of RIXS spectrometer, using LPF of theory analysis and calculating the varied-line-spacing grating parameters, this paper analyzes each aberration effect on the result of the energy resolution. The relationship between motor encoder and accurate angle of each part of spectrometer is needed during setting up and operating. Thus a non-contact measurement using visible laser was applied and it has been proved to be effective. Before the first commissioning of XFEL, the spectrometer was calibrated by X-ray in synchrotron end station for its energy resolution. The SHADOW program simulation shows that the performance of spectrometer meets the requirement of design and experiment.
-
Key words:
- RIXS spectrometer /
- varied-line-spacing grating /
- SHADOW simulation /
- energy resolution
-
表 1 凹面镜及变间距光栅主要参数
Table 1. Main parameters of mirror and grating
mirror VLS-grating substrates geometry rectangular rectangular material Si〈100〉 Si〈100〉 (L, W, H)/mm (90 90 20) (100 90 20) optical surface coat Pt 40 nm +/-10% Au 100 nm aperture (L, W)/mm (80, 80) (80, 74) geometry parameters concave plane spherical radius 29.472 m +/-1% (direction mark) 表 2 三坐标测量标定参数分析
Table 2. Result and analysis of coordinate measuring
mirror (z=-90 mm) grating (z=-83 mm) A
B-159.6 μm
-133.2 μmΘx=-0.94′ -107.5 μm
-101.3 μmΘx=0.27″ C
D-81.2 μm
-129.5 μmΘy=-1.76′ -104.9 μm
-98.9 μmΘy=0.225″ -
[1] Vankó G, Bordage A, Glatzel P, et al. Spin-state studies with XES and RIXS: From static to ultrafast[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188: 166-171. doi: 10.1016/j.elspec.2012.09.012 [2] 丁大军, 钱莉民. 软X射线共振非弹性光散射及其应用[J]. 光散射学报, 2000, 12(4): 211-215. doi: 10.3969/j.issn.1004-5929.2000.04.003Ding Dajun, Qian Limin. Soft X-Ray resonant inelastic scattering and its applications. The Journal of Light Scattering, 2000, 12(4): 211-215 doi: 10.3969/j.issn.1004-5929.2000.04.003 [3] Strocov V N, Schmitt T, Flechsig U, et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies[J]. Journal of Synchrotron Radiation, 2010, 17(5): 631-643. doi: 10.1107/S0909049510019862 [4] McKinney W R. Varied line-space gratings and applications[J]. Review of Scientific Instruments, 1992, 63(1): 1410-1414. doi: 10.1063/1.1143030 [5] 吴军, 杨家敏, 丁永坤, 等. 平焦场光栅光谱仪[J]. 强激光与粒子束, 2002, 14(4): 489-492. http://www.hplpb.com.cn/article/id/1345Wu Jun, Yang Jiamin, Ding Yongkun, et al. Flat field grating spectrograph for soft X-ray laser research. High Power Laser and Particle Beams, 2002, 14(4): 489-492 http://www.hplpb.com.cn/article/id/1345 [6] Namioka T, Noda H, Seya M. Possibility of using the holographic concave grating in vacuum monochromators[J]. Sci Light, 1973, 22: 77-99. [7] Noda H, Namioka T, Seya M. Geometric theory of the grating[J]. J Opt Soc Am, 1974, 64(8): 1031-1036. doi: 10.1364/JOSA.64.001031 [8] Miyamoto K. On a comparison between wave optics and geometrical optics by using Fourier analysis. Ⅲ. Image evaluation by spot diagram[J]. J Opt Soc Am, 1959, 49(1): 35-40. doi: 10.1364/JOSA.49.000035 [9] Namioka T. Theory of the concave grating. I[J]. J Opt Soc Am, 1959, 49(5): 446-460. doi: 10.1364/JOSA.49.000446 [10] Harada T, Kita T. Mechanically ruled aberration-corrected concave gratings[J]. Applied Optics, 1980, 19(23): 3987-3993. doi: 10.1364/AO.19.003987 [11] Kita T, Harada T, Nakano N, et al. Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph[J]. Applied Optics, 1983, 22(4): 512-513. doi: 10.1364/AO.22.000512 [12] Welnak C, Chen G J, Cerrina F. SHADOW: A synchrotron radiation and X-ray optics simulation tool[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 347(1/3): 344-347. [13] Sanchez del Rio M, Canestrari N, Jiang F, et al. SHADOW3: A new version of the synchrotron X-ray optics modelling package[J]. Journal of Synchrotron Radiation, 2011, 18(5): 708-716. doi: 10.1107/S0909049511026306 [14] Watanabe M, Toyoshima A, Azuma Y, et al. Performance of a varied-space plane-grating monochromator[C]//Optical Science, Engineering and Instrumentation'97. International Society for Optics and Photonics, 1997: 58-66. [15] 李朝阳. 变线距光栅单色器设计及关键技术[D]. 合肥: 中国科技大学, 2014: 22-23.Li Zhaoyang. Design and key techniques of varied line-space grating monochromator. Hefei: University of Science Technology of China, 2014: 22-23 [16] Rubensson J E. RIXS dynamics for beginners[J]. Journal of Electron Spectroscopy and Related Phenomena, 2000, 110: 135-151. [17] 张文海, 曹磊峰, 朱效立, 等. 高线密度X光透射光栅衍射效率[J]. 强激光与粒子束, 2012, 24(10): 2347-2350. doi: 10.3788/HPLPB20122410.2347Zhang Wenhai, Cao Leifeng, Zhu Xiaoli, et al. Diffraction efficiency of high line-density X-ray transmission gratings. High Power Laser and Particle Beams, 2012, 24(10): 2347-2350 doi: 10.3788/HPLPB20122410.2347