留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种电磁场谱间断元方法的比较

章阳 王向晖 张杰 王建国 齐红新

章阳, 王向晖, 张杰, 等. 两种电磁场谱间断元方法的比较[J]. 强激光与粒子束, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169
引用本文: 章阳, 王向晖, 张杰, 等. 两种电磁场谱间断元方法的比较[J]. 强激光与粒子束, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169
Zhang Yang, Wang Xianghui, Zhang Jie, et al. Comparison of two discontinuous spectral element methods[J]. High Power Laser and Particle Beams, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169
Citation: Zhang Yang, Wang Xianghui, Zhang Jie, et al. Comparison of two discontinuous spectral element methods[J]. High Power Laser and Particle Beams, 2018, 30: 023004. doi: 10.11884/HPLPB201830.170169

两种电磁场谱间断元方法的比较

doi: 10.11884/HPLPB201830.170169
基金项目: 

国家自然科学基金项目 31600675

国家自然科学基金项目 61231003

详细信息
    作者简介:

    章阳(1993—), 男,硕士研究生,主要从事生物电磁学研究; 2452025149@qq.com

    通讯作者:

    齐红新(1974—),男,博士,主要从事计算电磁学研究; flyerqhx@126.com

  • 中图分类号: O441.4

Comparison of two discontinuous spectral element methods

  • 摘要: 时域间断元方法是近年来电磁场计算领域的重要进展之一。将基函数的插值点和数值积分点重合的质量集中技术是降低该间断元方法质量矩阵存储开销和提高计算效率的重要手段。通过谐振腔、带通滤波器以及光子晶体内的电磁场等数值算例,在四边形网格上比较了传统的质量集中算法和近来提出的Weight-Adjust算法之间的差异。计算结果表明,尽管两种方法的存储量一样,但Weight-Adjust算法具有更高的精度。
  • 图  1  测量点处得到的模拟结果与参考值的误差比较

    Figure  1.  Comparison of simulation results with reference values at measuring point

    图  2  带通滤波器截面的几何模型

    Figure  2.  Geometrical model of bandpass filter's cross-section

    图  3  带通滤波器的散射系数

    Figure  3.  Scattering parameters of bandpass filter

    图  4  光子晶体的截面网格

    Figure  4.  Meshes of photonic crystal's cross-section

    图  5  光子晶体功率分配器的截面模型以及电磁场分布

    Figure  5.  Cross-section geometry and electromagnetic field distribution of photonic crystol power divider

    图  6  通道内某测量点处两组数据的绝对误差

    Figure  6.  Absolute error of two sets of data at measuring point

  • [1] Stephane D, Clement D, Stephane L, et al. Recent advances on a DGTD method for time-domain electromagnetics[J]. Photonics and Nanostructures Fundamentals and Applications, 2013, 11(4): 291-302. doi: 10.1016/j.photonics.2013.06.005
    [2] Stephane D, Stephane L, Ludovic M. Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media[J]. Journal of Computational and Applied Mathematics, 2017, 316(15): 122-132.
    [3] Xiong Meng, Jennifer K R. Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement[J]. Numerische Mathematik, 2017, 136(1): 27-73.
    [4] Zhu Jun, Zhong Xinghui, Shu Chiwang, et al. Runge-Kutta discontinuous Galerkin method with a simple and compact hermite WENO limiter on unstructured meshes[J]. Communications in Computational Physics, 2017, 21(3): 623-649.
    [5] Demirel A, Niegemann J, Busch K, et al. Efficient multiple time-stepping algorithms of higher order[J]. Journal of Computational Physics, 2015, 285(15): 133-148.
    [6] 夏轶栋, 伍贻兆, 吕宏强. 高阶间断有限元法的并行计算研究[J]. 空气动力学报, 2011, 29(5): 537-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201105000.htm

    Xia Yidong, Wu Yizhao, Lü Hongqiang. Parallel computation of a high-order discontinuous Galerkin method on unstructured grids. Acta Aerodynamica Sinica, 2011, 29(5): 537-541 https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201105000.htm
    [7] Liu Xiang, Kameni A, Serhir M, et al. 3D modeling with discontinuous Galerkin time domain method for ground penetration radar application[C]//GDR Ondes, Assemblee Generale Interferences d'Ondes, 2015.
    [8] Su Yan, Andrew D G, Jin Jianming. Modeling of plasma formation during high-power microwave breakdown in air using the discontinuous Galerkin time-domain method[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 27(1): 2-13.
    [9] Nikolai S, Claire S, Stephane L, et al. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects[J]. Journal of Computational Physics, 2016, 316(7): 396-415.
    [10] Chan J, Hewett R J, Warburton T. Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous media[OL]. arXiv, 2016.
    [11] Anderson W K, Wang Li, Kapadia S, et al. Petrov-Galerkin and discontinuous Galerkin methods for time-domain and frequency-domain electromagnetic simulations[J]. Journal of Computational Physics, 2011, 230(23): 8360-8385.
    [12] Liu Meilin, Sirenko K, Bagci H. An efficient discontinuous Galerkin finite element method for highly accurate solution of Maxwell equations[J]. IEEE Trans Antennas and Propagation, 2012, 60(8): 3992-3998.
  • 加载中
图(6)
计量
  • 文章访问数:  1069
  • HTML全文浏览量:  270
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-10-11
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回