留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦气空心阴极放电动力学过程的模拟研究

何寿杰 张宝铭 王鹏 张钊 韩育宏

何寿杰, 张宝铭, 王鹏, 等. 氦气空心阴极放电动力学过程的模拟研究[J]. 强激光与粒子束, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211
引用本文: 何寿杰, 张宝铭, 王鹏, 等. 氦气空心阴极放电动力学过程的模拟研究[J]. 强激光与粒子束, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211
He Shoujie, Zhang Baoming, Wang Peng, et al. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211
Citation: He Shoujie, Zhang Baoming, Wang Peng, et al. Simulation on the dynamics of hollow cathode discharge in helium[J]. High Power Laser and Particle Beams, 2018, 30: 024001. doi: 10.11884/HPLPB201830.170211

氦气空心阴极放电动力学过程的模拟研究

doi: 10.11884/HPLPB201830.170211
基金项目: 

国家自然科学基金项目 11205046

河北省自然科学基金项目 A2016201025

河北大学研究生创新资助项目 X201733

详细信息
    作者简介:

    何寿杰(1979-), 男,副教授,从事空心阴极放电相关方向的研究;heshouj@hbu.edu.cn

  • 中图分类号: O53

Simulation on the dynamics of hollow cathode discharge in helium

  • 摘要: 利用流体模型模拟研究了氦气空心阴极放电的时空动力学过程,计算得到了不同放电时刻电子和亚稳态氦原子密度、电势、电场、基态电离速率和分步电离速率等的时空分布特性。特别是讨论了亚稳态原子和分步电离对于放电的影响。结果表明,随着电流的增长,放电处于五个不同的放电模式:第一阶段电流上升非常缓慢,为汤生放电模式,带电粒子密度、亚稳态原子密度和径向电场均很弱;第二阶段电流迅速上升,放电模式由汤生放电向空心阴极放电过渡,带电粒子密度、亚稳态原子密度和径向电场迅速增强;第三阶段达到准稳态阶段,放电电流增长速度变缓,形成了明显的阴极鞘层结构;第四阶段为空心阴极效应形成阶段,向稳态阶段过渡;第五阶段为稳态放电阶段。研究结果同时表明,亚稳态氦原子和分步电离在放电的初始阶段对于放电的发展作用较弱,在前三阶段中,电子的产生以基态电离为主。随着放电的发展,由亚稳态原子引起的分步电离对新的电子产生的作用逐渐接近并超过基态电离,对总电离的贡献率越来越高。
  • 图  1  空心阴极放电系统截面图

    Figure  1.  Cross section of hollow cathode discharge

    图  2  电流随时间变化图

    Figure  2.  Discharge current as a function of time

    图  3  第一阶段t=0.76 μs时,电势、电子密度亚稳态氦原子密度分布图

    Figure  3.  Distribution of electric potential, electron density, metastable helium atom density in first stage at t=0.76 μs

    图  4  径向电场随时间变化图

    Figure  4.  Radial electric field at different time

    图  5  第一阶段t=0.76 μs时,基态电离速率和分步电离速率分布图

    Figure  5.  Distribution of ground ionization and step-wise ionization rates in first stage at t=0.76 μs

    图  6  第二阶段t=1.32 μs时,电势、电子、亚稳态氦原子分布图

    Figure  6.  Distribution of potential, electron, metastable helium atom density in second stage at t=1.32 μs.

    图  7  第二阶段t=1.32 μs时,基态直接电离速率和分步电离速率的空间分布

    Figure  7.  Distribution of ground ionization rate, step-wise ionization rates in second stage at t=1.32 μs

    图  8  第三阶段t=1.72 μs时,电势、电子密度、亚稳态原子密度分布图

    Figure  8.  Distribution of electric potential, electron density, metastable atom density in third stage at t=1.72 μs

    图  9  第三阶段t=1.72 μs时基态直接电离速率分步电离速率分布图

    Figure  9.  Distribution of ground ionization rate and step-wise ionization rate in third stage at t=1.72 μs

    图  10  未考虑亚稳态原子时电流随时间变化图

    Figure  10.  Current versus time without metastable atoms

    图  11  第四阶段t=3.29 μs时,电势、电子和亚稳态氦原子分布图

    Figure  11.  Distribution of potential, electron density, metastable helium atom density in fourth stage at t=3.29 μs

    图  12  第四阶段t=3.29 μs时基态直接电离速率和分步电离速率分布图

    Figure  12.  Distribution of ground ionization rate and step-wise ionization rate in fourth stage at t=3.29 μs

    图  13  稳态放电时t=10 μs电势、电子密度、亚稳态氦原子密度和电子平均能量分布图

    Figure  13.  Distribution of potential, electron density, metastable helium density and mean electron energy in steady state discharge at t=10 μs

    图  14  稳态阶段t=10 μs时, 基态直接电离速率和分步电离速率的空间分布

    Figure  14.  Distribution of ground ionization rate, and stepwise ionization rates in steady state stage at t=10 μs

    表  1  放电反应类型及反应速率系数

    Table  1.   Types of discharge reactions and reaction rate coefficients

    reaction equation reaction type reaction rate coefficient/(cm3s-1) energy threshold/eV
    1 He+e→He++2e ground state ionization Kgi [14] 24.6(Ui)
    2 He+e→Hem+e ground state excitation Km[14] 19.8(Um)
    3 Hem+e→He++2e step-wise ionization Ksi[14] 4.8(Us)
    4 Hem+ Hem→He++He+e Penning ionization Kpi=4.5×10-10[14]
    5 Hem+ e→He+hν+e de-excitation Kd=4.2×10-9[15]
    6 Hem+ He→He+He two-body collision K2B=6.0×10-15[16]
    7 Hem+ 2He→He2m+He three-body collision K3B=1.3×10-33[14]
    下载: 导出CSV
  • [1] Schoenbach K H, Becker K. 20 years of microplasma research: a status report[J]. Eur Phys J D, 2016, 70(2): 29. doi: 10.1140/epjd/e2015-60618-1
    [2] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684. doi: 10.13336/j.1003-6520.hve.20160308006

    Ouyang Jiting, Zhang Yu, Qin Yu. Micro-discharge and its applications. High Voltage Engineering, 2016, 42(3): 673-684 doi: 10.13336/j.1003-6520.hve.20160308006
    [3] 赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29(3): 36-42. doi: 10.11884/HPLPB201729.170043

    Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column. High Power Laser and Particle Beams, 2017, 29(3): 36-42 doi: 10.11884/HPLPB201729.170043
    [4] 顾小卫, 蒙林, 李家胤, 等. 微空心阴极放电的3维数值模拟[J]. 强激光与粒子束, 2009, 21(1): 92-96. http://www.hplpb.com.cn/article/id/3838

    Gu Xiaowei, Meng Lin, Li Jiayin, et al. Three-dimensional numerical simulation of microhollow cathode discharge model. High Power Laser and Particle Beams, 2009, 21(1): 92-96 http://www.hplpb.com.cn/article/id/3838
    [5] Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Appl Phys Lett, 2005, 86(7): 468.
    [6] 吴亚雄, 王海兴. 微空心阴极内氩等离子体特性的二维数值模拟[J]. 高电压技术, 2015, 41(9): 2965-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509022.htm

    Wu Yaxiong, Wang Haixing. Two-dimensional simulation of discharge characteristics of argon plasma in microhollow cathode. High Voltage Engineering, 2015, 41(9): 2965-2972 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201509022.htm
    [7] 夏广庆, 薛伟华, 陈茂林, 等. 氩气微腔放电中特性参数的数值模拟研究[J]. 物理学报, 2011, 60: 015201. doi: 10.7498/aps.60.015201

    Xia Guangqing, Xue Weihua, Chen Maolin, et al. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60: 015201 doi: 10.7498/aps.60.015201
    [8] Hong Y J, Kim G J, Lee S H, et al. Comparison between particle-in-cell Monte-Carlo and fluid simulations of argon microhollow discharges[J]. Computer Physics Communications, 2007, 177(1/2): 128.
    [9] Wang Q, Doll F, Donnelly V M, et al. Experimental and theoretical study of the effect of gas flow on gas temperature in an atmospheric pressure microplasma[J]. J Phys D: Appl Phys, 2007, 40(14): 4202.
    [10] 邹晓兵, 杨新婷, 付洋洋, 等. 低气压He/N2混合气体的辉光放电数值模拟[J]. 高电压技术, 2016, 42(12): 3741-3746. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612004.htm

    Zou Xiaobing, Yang Xinting, Fu Yangyang, et al. Numerical simulation of He/N2 mixture glow discharge at low pressure. High Voltage Engineering, 2016, 42(12): 3741-3746 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201612004.htm
    [11] Beleznai S, Mihajlik G, Maros I, et al. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp[J]. J Phys D: Appl Phys, 2010, 43: 015203.
    [12] 哈静, 谷延霞, 刘立芳. 微空心阴极放电时空特性[J]. 强激光与粒子束, 2014, 26: 054004. doi: 10.11884/HPLPB201426.054004

    Ha Jing, Gu Yanxia, Liu Lifang. Temporal and spatial characteristics of micro-hollow cathode discharge. High Power Laser and Particle Beams, 2014, 26: 054004 doi: 10.11884/HPLPB201426.054004
    [13] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63: 095206. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409036.htm

    Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electro de configuration. Acta Physica Sinica, 2014, 63: 095206 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409036.htm
    [14] Rauf S, Kushner M J. Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation[J]. J Appl Phys, 1999, 85(7): 3460-3469.
    [15] Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature[J]. Phys Rev A, 1976, 13(3): 1140-1176.
    [16] Phelps A V. Absorption studies of helium metastable atoms and molecules[J]. Phys Rev, 1955, 99(4): 1307-1313.
    [17] Ward A L. Calculations of cathode-fall characteristics[J]. J Appl Phys, 1962, 33(9): 2789-2794.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  240
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-16
  • 修回日期:  2017-08-29
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回