Three-dimensional Monte Carlo transport code JMCT in shielding engineering application
-
摘要: 核设施辐射屏蔽计算,由于其大规模计算及深穿透等特性,一直是蒙特卡罗方法工程应用的难点之一。采用我国自主研发的三维中子-光子蒙特卡罗粒子输运模拟软件JMCT,结合可视化建模工具JLAMT,对OECD国际基准例题Winfrith Iron/Water Benchmark Experiment(ASPIS)两例实验装置进行建模与计算分析, 并将计算结果与实验值及MCNP计算值进行对比。结果表明,JMCT计算值与MCNP计算值符合较好,其中Winfrith Iron Benchmark Experiment(ASPIS)最大偏差不超过7%,平均偏差1.3%;Winfrith Water Benchmark Experiment(ASPIS)最大偏差小于20%,平均偏差小于10%,证明了JMCT在屏蔽计算以及深穿透问题的可靠性与工程应用性。Abstract: Radiation shielding calculation of nuclear facilities has always been one of the difficulties in engineering application of Monte Carlo method for its large scale calculation and deep penetration characteristics. Two international benchmarks, published by OECD, Winfrith Iron/Water Benchmark Experiment(ASPIS), were simulated based on the three-dimensional Monte Carlo transport code JMCT, accompanied by a visual modeling tool JLAMT. The simulation includes detailed modeling and shielding calculation. Calculated results were compared with experimental data, also with almost same results achieved by MCNP. The comparisons show that the calculated results agree well with the experimental data. The maximum deviation of JMCT and MCNP is below 20% and the average deviation is less than 10%. It is proved that JMCT code suits well for shielding simulation and deep penetration problems.
-
Key words:
- Monte Carlo /
- deep penetration /
- JMCT /
- JLAMT /
- shielding transportation
-
表 1 Winfrith Water Benchmark实验不同源项配置方案及相应模拟粒子数规模
Table 1. Experimental source arrangements and scale of simulated particles in different cases for Winfrith Water Benchmark
case source-detector spacing/cm number of sources total source strength/(n·s-1) particles 1 10.16 1 1.256 0×107 4×107 2 15.24 2 2.540 0×107 2×108 3 20.32 4 5.260 0×107 2×108 4 25.40 8 1.048 0×108 2×108 5 30.48 8 1.046 0×108 1×109 6 35.56 8 1.048 0×107 1×109 7 50.80 8 1.044 5×108 1×109 -
[1] 许淑艳. 蒙特卡罗方法在实验核物理中的应用[M]. 北京: 原子能出版社, 2006.Xu Shuyan. Application of Monte Carlo method in experimental nuclear physics. Beijing: Atomic Energy Press, 1980 [2] 谢仲生, 张育曼, 张建民, 等. 核反应堆物理数值计算[M]. 北京: 原子能出版社, 1997.Xie Zhongsheng, Zhang Yuman, Zhang Jianmin, et al. Nuclear reactor physics numerical calculation. Beijing: Atomic Energy Press, 1997 [3] 裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用[M]. 北京: 科学出版社, 1980.Pei Lucheng, Zhang Xiaoze. Monte Carlo method and its application in particle transport problem. Beijing: Science Press, 1980 [4] X-5 Monte Carlo Team. MCNP: A general Monte Carlo N-particle transport code[R]. LA-CP-03-0248, 2003. [5] Emmett M B, Hollenbach D F. Current status of the Oak ridge Monte Carlo Codes: MORSE/SAS4 and KENO[R]. Computational Physics and Engineering Division, 2000. [6] Cowan P, Dobson G, Wright G A, et al. Recent developments to the Monte Carlo code MCBEND[J]. Nuclear Technology, 2009, 168(3): 780-784. doi: 10.13182/NT09-A9306 [7] 吴宜灿, 宋婧, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1): 62-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201601009.htmWu Yican, Song Jing, Hu Liqin, et al. Super Monte Carlo calculation program SuperMC. Chinese Journal of Nuclear Science and Engineering, 2016, 36(1): 62-71 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201601009.htm [8] 佘顶, 梁金刚, 李泽光, 等. 堆用蒙卡程序RMC-Beta2.0用户使用手册[M]. 北京: 清华大学, 2013.She Ding, Liang Jingang, Li Zeguang, et al. Users' manual for Reactor Monte Carlo code RMC-Beta2.0. Bejing: Peking University, 2013 [9] 佘顶, 丘意书, 王侃. 反应堆蒙特卡罗分析软件CosRMC内部测试版用户手册[M]. 北京: 清华大学, 2015.She Ding, Qiu Yishu, Wang Kan. Users' manual for Reactor Monte Carlo code CosRMC internal testing. Bejing: Peking University, 2015 [10] 邓力, 李刚, 李瑞, 等. 三维蒙特卡罗粒子输运软件JMCT用户使用手册(V2.0版)[M]. 北京: 北京应用物理与计算数学研究所, 2015.Deng Li, Li Gang, Li Rui, et al. Users' manual for three dimensional Monte Carlo particle transport code JMCT version2.0. Beijing: Insitute of Applied Physics and Computational Mathematics, 2015 [11] 张宝印, 李刚, 邓力. 组合几何蒙特卡罗粒子输运支撑软件框架JCOGIN介绍[J]. 强激光与粒子束, 2013, 25(1): 173-176. doi: 10.3788/HPLPB20132501.0173Zhang Baoyin, Li Gang, Deng Li. JCOGIN: a combinatorial geometry Monte Carlo particle transport infrastructure. High Power Laser and Particle Beams, 2013, 25(1): 173-176 doi: 10.3788/HPLPB20132501.0173 [12] Butler J, Carter M D, McCracken A K, et al. Packwood: Results and calculational model of the Winfrith Iron Benchmark Experiment[R]. NEACRP-A-629, 1984. [13] Carter M D, Packwood A. The Winfrith Water Benchmark Experiment[R]. NEACRP-A-628, 1984.