Improving calculation efficiency of neutron multiplicity counting by sequential detection events simulation
-
摘要: 提出基于时序处理探测事件的中子多重性计数统计方法。在JMCT粒子输运数值模拟程序的基础上研发了用于统计中子多重性计数的专用数值模拟程序JMCT_NMC,实现在线的中子多重性计数模拟功能。展示了利用中子多重性计数算例检验程序,比较了JMCT_NMC与传统算法计算时间消耗的结果。时序探测事件处理方法不需大量存储粒子信息,在解决中子多重性计数模拟受内存限制问题的同时,提升了计算效率。在JMCT_NMC程序中,时序探测事件模拟手段在探测器关联事件模拟、本底分析等领域还有着更广泛的应用前景。Abstract: Neutron multiplicity counting (NMC) has been widely used in many fields related to non-destructive nuclear material measurement, such as nuclear material protection control and accounting, arms control verification and so on. Developing simulation tools, and carrying out numerical experiments are important means in the research on the application of NMC, which also become one important area of neutron transport simulation. This paper presents a new method to calculate NMC by sequential detection events simulation. By realizing the on-line NMC calculation, based on JMCT particle transport simulation code, the program to simulate neutron multiplicity counting, JMCT_NMC, was developed. This paper also presents some results of NMC calculation examples to test the code, and comparison of the time consumption of JMCT_NMC and traditional method. In JMCT_NMC code, by getting rid of the large data storage requirement, it is possible to simulate neutron multiplicity with large event number and high calculation efficiency.
-
表 1 252Cf自发裂变中子多重性的评价值[22]
Table 1. Evaluated neutron multiplicity data for 252Cf spontaneous fission
η 0 1 2 3 4 5 6 7 8 9 10 P(η) 0.002 1 0.026 0.12 0.27 0.30 0.18 0.066 0.014 0.001 8 0.000 10 5.00×10-7 表 2 不同计算方法消耗时间比较表
Table 2. Time consumed with different calculation methods
index I/s-1 Tdet/s ntotal TJ/s consumed time by JMCT+post TNMC/s TJMO/s TP/s Ttotal/s 1 1×102 1×104 1×106 11 24 10 34 11 2 1×102 1×105 1×107 103 227 98 325 106 3 1×102 1×106 1×108 1073 2255 991 3246 1066 4 1×102 1×107 1×109 9669 22 035 - - 11 002 5 1×103 1×102 1×106 11 24 10 34 11 6 1×103 1×103 1×107 103 221 96 317 110 表 3 输出模块耗费计时统计表
Table 3. Time consumed in output modules
index TJM/s TJMO/s Tout/s Rout/% 1 11 24 13 54 2 109 227 118 52 3 1156 2255 1099 49 4 11 646 22 035 10 389 47 5 11 24 13 54 6 110 221 111 50 -
[1] 张全虎. 国家安全地球物理丛书(十一)——地球物理应用前沿[M]. 西安: 西安地图出版社, 2015: 201-206.Zhang Quanhu. National safety geophysics series (Eleventh)—Frontiers of geophysical applications. Xi'an: Xi'an Cartographic Publishing House, 2015: 201-206 [2] Peerani P, Ferrer M. Assessment of uncertainties in neutron multiplicity counting[J]. Nuclear Instruments and Methods in Physics Research A, 2008, 589(2): 304-309. doi: 10.1016/j.nima.2008.02.021 [3] Langner D G, Krick M S, Stewart J E, et al. The state-of-the-art of thermal neutron multiplicity counting[R]. LA-UR-97-2734, 1997. [4] 易凌帆, 颜拥军, 周剑良, 等. 利用MCNPX模拟中子多重性脉冲序列采集[J]. 核电子学与探测技术, 2016, 36(6): 562-564. doi: 10.3969/j.issn.0258-0934.2016.06.002Yi Lingfan, Yan Yongjun, Zhou Jianliang, et al. The simulation of neutron multiplicity pulse train acquisition by using MCNPX. Nuclear Electronics & Detection Technology, 2016, 36(6): 562-564 doi: 10.3969/j.issn.0258-0934.2016.06.002 [5] Dolan J, Flaska M, Poitrasson-Riviere A, et al. Plutonium measurements with a fast-neutron multiplicity counter for nuclear safeguards applications[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 763(6): 565-574. [6] Mueller J, Mattingly J. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 825(1): 87-92. [7] 许鹏, 徐野, 周满, 等. 铀属性测量中的时间关联符合法研究进展[J]. 核电子学与探测技术, 2016, 36(6): 602-606. doi: 10.3969/j.issn.0258-0934.2016.06.011Xu Peng, Xu Ye, Zhou Man, et al. Progress of time-correlated coincidence method in measurement of uranium attributes. Nuclear Electronics & Detection Technology, 2016, 36(6): 602-606 doi: 10.3969/j.issn.0258-0934.2016.06.011 [8] 杨师俨, 何曼丽, 蒋丹枫, 等. 反应堆235U裂变源辐射防护材料的优化设计[J]. 计算物理, 2017, 34(1): 73-81. doi: 10.3969/j.issn.1001-246X.2017.01.009Yang Shiyan, He Manli, Jiang Danfeng, et al. Optimization design of radiation shielding materials for 235U fission source in reactor. Chinese Journal of Computational Physics, 2017, 34(1): 73-81 doi: 10.3969/j.issn.1001-246X.2017.01.009 [9] 胡世鹏, 刘知贵, 张活力, 等. 诱发核部件裂变探测技术仿真研究[J]. 西南科技大学学报, 2012, 27(1): 60-64. doi: 10.3969/j.issn.1671-8755.2012.01.014Hu Shipeng, Liu Zhigui, Zhang Huoli, et al. Simulation of nuclear component detection technology for induced fission. Journal of Southwest University of Science and Technology, 2012, 27(1): 60-64 doi: 10.3969/j.issn.1671-8755.2012.01.014 [10] Zhou Hao, Lin Hongtao, Liu Guorong. A neutron multiplicity analysis method for uranium samples with liquid scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 797(11): 70-76. [11] Chen Ligao, Gong Jian, Wang Kan, et al. Variance analysis for passive neutron multiplicity counting[J]. Nuclear Science and Techniques, 2015, 26(2): 58-62. [12] 朱剑钰, 谢文雄, 李刚, 等. 核查技术数值实验平台中的时间关联符合测量与中子多重性测量[J]. 计算物理, 2015, 32(2): 213-219. doi: 10.3969/j.issn.1001-246X.2015.02.009Zhu Jianyu, Xie Wenxiong, Li Gang, et al. Time correlation and neutron multiplicity counting measurement in numerical experiment platform on verification technologies. Chinese Journal of Computational Physics, 2015, 32(2): 213-219 doi: 10.3969/j.issn.1001-246X.2015.02.009 [13] Xie Wenxiong, Li Jianshang, Gong Jian, et al. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method[J]. Chinese Physics C, 2013, 37: 106202. [14] Valentine T. MCNP-DSP Users Manual[R]. ORNL/TM-13334, 1996. [15] 朱剑钰, 付元光, 徐雪峰. 源强对Rossi-α噪声分析的影响[J]. 强激光与粒子束, 2017, 29: 056006. doi: 10.11884/HPLPB201729.160184Zhu Jianyu, Fu Yuanguang, Xu Xuefeng. Influence of neutron source intensity on Rossi-α measurement. High Power Laser and Particle Beams, 2017, 29: 056006 doi: 10.11884/HPLPB201729.160184 [16] Ensslin N, Harker W, Krick M, et al. Application guide to neutron multiplicity counting[R]. LA-13422-M, 1998. [17] 李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162. doi: 10.3788/HPLPB20132501.0158Li Gang, Zhang Baoyin, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162 doi: 10.3788/HPLPB20132501.0158 [18] 秦桂明, 马彦, 付元光, 等. 反应堆的大规模几何分层建模[J]. 强激光与粒子束, 2017, 29: 036006. doi: 10.11884/HPLPB201729.160357Qin Guiming, Ma Yan, Fu Yuanguang, et al. Large-scale geometric modeling and management for reactor simulation. High Power Laser and Particle Beams, 2017, 29: 036006 doi: 10.11884/HPLPB201729.160357 [19] 郑俞, 全国萍, 李刚. 基于JLAMT可视化建模的JMCT模拟计算[J]. 强激光与粒子束, 2017, 29: 036017. doi: 10.11884/HPLPB201628.160291Zheng Yu, Quan Guoping, Li Gang. Simulation of JMCT based on JLAMT visualized modeling tool. High Power Laser and Particle Beams, 2017, 29: 036017 doi: 10.11884/HPLPB201628.160291 [20] 张玲玉, 李瑞, 李刚, 等. γ射线探测器响应函数的JMCT模拟计算[J]. 强激光与粒子束, 2017, 29: 016024. doi: 10.11884/HPLPB201729.160454Zhang Lingyu, Li Rui, Li Gang, et al. JMCT simulation of response functions for gamma-ray detectors. High Power Laser and Particle Beams, 2017, 29: 016024 doi: 10.11884/HPLPB201729.160454 [21] 朱剑钰, 徐雪峰, 蒋翊民, 等. 主动中子多重性法估算铀材料质量的不确定性[J]. 原子核物理评论, 2015, 32(3): 323-329. https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201503012.htmZhu Jianyu, Xu Xuefeng, Jiang Yimin, et al. Uncertainty of uranium mass measurement by active neutron multiplicity. Nuclear Physics Review, 2015, 32(3): 323-329 https://www.cnki.com.cn/Article/CJFDTOTAL-HWDT201503012.htm [22] Santi P, Miller M. Reevaluation of prompt neutron emission multiplicity distributions for spontaneous fission[J]. Nuclear Science and Engineering, 2008, 160(2): 190-199.