Failure mechanism and parameter threshold analysis of the internally pressurized cylinder shell under laser irradiation
-
摘要: 通过数值计算模拟了激光诱导充压柱壳的热力破坏效应,研究了典型结构的动态爆裂过程,获得的破坏模式与实验结果基本一致。给出了三类典型破坏模式及其对应的参数范围,探讨了各类破坏模式的形成机理,并分析了不同光斑尺寸、壳体厚度条件下热软化效应对破坏内压阈值的影响,以及预内压与破坏时间的关系。研究结果表明:光斑半径越大、热软化程度越高,柱壳的破坏内压阈值越低,且破坏内压阈值随着壳体厚度的减小呈线性下降;给定激光参数和壳体参数下破坏时间随预充内压增大而减小并呈二次函数关系。给出了一种通过热软化程度预估激光诱导充压柱壳破坏时间的方法。Abstract: Thermal-mechanical failure behavior of the internally pressurized cylinder shell under laser irradiation is investigated by numerical approach. The dynamic bursting processes are simulated, and the obtained failure modes are validated by experiment. Three typical failure modes are found and the corresponding parameter ranges are listed, and formation mechanisms of each failure mode are discussed. The effect of thermal softening on the threshold of internal pressure at different laser spot sizes and shell thicknesses are explored, and the relation between internal pressure and failure time is discussed. The results show that the threshold of internal pressure decreases with the increasing laser spot size and the extent of thermal softening, and it is in linear relationship with the shell thickness. At given laser parameters and shell parameters, the failure time declines in a quadratic function of internal pressure. A method to predict the failure time of internally pressurized cylinder shell under laser irradiation based on thermal softening factor is proposed and presented.
-
表 1 不同温度下7A04铝合金热力学性能参数
Table 1. Thermal-mechanical parameters of 7A04 aluminum alloy varying with temperature
T/K λ/(W·m-1· K-1) C/(J·kg-1· K-1) α/(10-6· K-1) E/GPa σs/MPa ν 293 155 880 22.0 66 432 0.350 373 159 921 23.6 61 402 0.355 473 163 1005 25.2 50 235 0.360 573 163 1047 26.8 46 118 0.365 673 159 1089 28.4 43 69 0.370 表 2 第Ⅰ类破坏模式:“X”型整体爆裂的相关参数范围
Table 2. Parameters related to failure type Ⅰ: "X" type burst
No. R h q0/(W·cm-2) P/Pb 1 0.03 0.01 424 0.95~0.99 2 0.05 0.01 153 0.95~0.99 3 0.07 0.002~0.01 78 0.95~0.99 4 0.1 0.01 38 0.95~0.99 表 3 第Ⅱ类破坏模式:裂纹扩展爆裂的相关参数范围
Table 3. Parameters related to failure type Ⅱ: crack propagation and burst
No. R h q0/(W·cm-2) P/Pb 1 0.03 0.01 424 0.7~0.85 2 0.05 0.01 153 0.6~0.85 3 0.07 0.004~0.01 78 0.6~0.85 4 0.07 0.002 78 0.65~0.88 5 0.1 0.01 38 0.55~0.85 表 4 第Ⅲ类破坏模式:局部穿孔的相关参数范围
Table 4. Parameters related to failure type Ⅲ: local perforation failure
No. R h q0/(W·cm-2) P/Pb 1 0.03 0.01 424 0.01~0.59 2 0.05 0.01 153 0.01~0.53 3 0.07 0.004~0.01 78 0.01~0.47 4 0.07 0.002 78 0.01~0.61 5 0.1 0.01 38 0.01~0.35 -
[1] 宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46 (1): 435-477.Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser. Advances in Mechanics, 2016, 46 (1): 435-477 [2] 黄亿辉, 宋宏伟, 黄晨光. 超声速气流下强激光辐照靶体失效数值模拟[J]. 强激光与粒子束, 2013, 25 (9): 2229-2234. doi: 10.3788/HPLPB20132509.2229Huang Yihui, Song Hongwei, Huang Chenguang. Numerical simulation of failure of target irradiated by high-power laser subjected to supersonic airflow. High Power Laser and Particle Beams, 2013, 25 (9): 2229-2234 doi: 10.3788/HPLPB20132509.2229 [3] 丁宇, 蔡军. 连续波1064 nm激光辐照铝金属的热分布研究[J]. 光电技术应用, 2016, 31 (6): 28-32.Ding Yu, Cai Jun. Research on thermal distribution of 1064 nm continuous wave laser irradiation aluminum. Electro-Optic Technology Application, 2016, 31 (6): 28-32 [4] 罗积军, 徐军, 侯素霞, 等. 强激光对燃烧室壳体的热-力毁伤研究[J]. 光子学报, 2012, 41 (6): 713-717.Luo Jijun, Xu Jun, Hou Suxia, et al. Thermal and dynamics damage in combustion chamber case under high power laser. Acta Photonica Sinica, 2012, 41 (6): 713-717 [5] 赵剑衡, 孙承纬, 李思忠, 等. 激光辐照下充压铝柱壳爆裂断口分析[J]. 强激光与粒子束, 1998, 10 (1): 113-117. http://www.hplpb.com.cn/article/id/3292Zhao Jianheng, Sun Chengwei, Li Sizhong, et al. Fractographic analysis of aluminum cylindrical shells damaged by inner pressure and surface laser irradiation. High Power Laser and Particle Beams, 1998, 10 (1): 113-117 http://www.hplpb.com.cn/article/id/3292 [6] 赵剑衡, 章冠人, 刘绪发. 激光辐照下充压柱壳结构变形的数值模拟[J]. 高压物理学报, 1996, 10 (4): 262-268.Zhao Jianheng, Zhang Guanren, Liu Xufa. A numerical simulation to the deformation of an internally pressured cylinder tank under intensive laser irradiation. Chinese Journal of High Pressure Physics, 1996, 10 (4): 262-268 [7] 颜怡霞, 陈裕泽, 陈刚, 等. 激光辐照下充内压柱壳动态爆裂的数值模拟[J]. 爆炸与冲击, 2004, 24 (6): 487-492.Yan Yixia, Chen Yuze, Chen Gang, et al. Numerical simulation on the failure of internally pressured cylindrical shell under laser irradiation. Explosion and Shock Waves, 2004, 24 (6): 487-492 [8] 张家雷, 谭福利, 仝延锦. 激光辐照下充压柱壳的破坏能量阈值数值模拟[J]. 强激光与粒子束, 2010, 22 (5): 991-995. http://www.hplpb.com.cn/article/id/4569Zhang Jialei, Tan Fuli, Tong Yanjin. Numerical simulation of failure energy threshold of internally pressured cylindrical shell under laser irradiation. High Power Laser and Particle Beams, 2010, 22 (5): 991-995 http://www.hplpb.com.cn/article/id/4569 [9] 黄晨光, 陈思颖, 段祝平. 激光辐照下充压圆筒变形的相似律问题[J]. 强激光与粒子束, 2004, 16 (8): 962-966. http://www.hplpb.com.cn/article/id/641Huang Chenguang, Chen Siying, Duan Zhuping. Similarity criterion about deformation and failure of pressurized cylinder subjected to laser irradiation. High Power Laser and Particle Beams, 2004, 16 (8): 962-966 http://www.hplpb.com.cn/article/id/641 [10] 李清源. 强激光对飞行器的毁伤效应[M]. 北京: 中国宇航出版社, 2012.Li Qingyuan. Damage effects of vehicles irradiated by intense lasers. Beijing: China Astronautic Publishing House, 2012