留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某型飞艇平台微波测试环境研究

闫军凯 张浩亮 杨猛 郝文析 晏峰 熊正锋 王雪锋 蒋廷勇 徐敏杰

闫军凯, 张浩亮, 杨猛, 等. 某型飞艇平台微波测试环境研究[J]. 强激光与粒子束, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302
引用本文: 闫军凯, 张浩亮, 杨猛, 等. 某型飞艇平台微波测试环境研究[J]. 强激光与粒子束, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302
Yan Junkai, Zhang Haoliang, Yang Meng, et al. Research on microwave testing environments of an airship lifting platform[J]. High Power Laser and Particle Beams, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302
Citation: Yan Junkai, Zhang Haoliang, Yang Meng, et al. Research on microwave testing environments of an airship lifting platform[J]. High Power Laser and Particle Beams, 2018, 30: 073007. doi: 10.11884/HPLPB201830.170302

某型飞艇平台微波测试环境研究

doi: 10.11884/HPLPB201830.170302
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    闫军凯(1982-),男,高工,从事强电磁环境实验与测试研究; yanjunkai@163.com

  • 中图分类号: TJ43;O441

Research on microwave testing environments of an airship lifting platform

  • 摘要: 针对微波试验用某型飞艇升空平台开展试验环境测试研究,给出了中等气象条件下的测试结果。指出定姿飞控模式下的艇体方位角稳定性优于压航迹模式,两种飞控模式下艇体俯仰角和滚转角稳定性相近; 统计分析指出配试用艇载二轴天线稳定平台可有效隔离飞行中艇体三姿±10°以上的晃动,将接收天线主轴稳定指向辐射源,天线主轴方位、俯仰角控制精度优于±1°。研究了相对辐射源20~40 km,迎头、横向两种航线下,艇载4.5°波束宽度天线接收信号的幅度,统计分析指出迎头飞行时天线增益损失小于1 dB,信号稳定性优于±1 dB,横向飞行时天线增益损失约2.3 dB,信号稳定性约±3 dB。研究给出了飞行条件下艇体散射环境和地面散射环境对艇载天线接收信号幅度的影响。
  • 图  1  两种自动驾驶模式下飞艇艇体方位角测试结果

    Figure  1.  Test results of the airship's head azimuth under two different autopilot modes

    图  2  两种自动驾驶模式下飞艇艇体俯仰角测试结果

    Figure  2.  Test results of the airship's head elevation under two different autopilot modes

    图  3  两种自动驾驶模式下飞艇艇体俯仰角测试结果

    Figure  3.  Test results of the airship's roll angle under two different autopilot modes

    图  4  天线稳定平台指向精度测试结果

    Figure  4.  Beam orientation test results of the antenna stabilization platform

    图  5  迎头飞行航线测试结果

    Figure  5.  Test results under head-on flight path

    图  6  侧向飞行航线测试结果

    Figure  6.  Test results under lateral flight path

    图  7  艇体电磁散射对接收天线增益的影响

    Figure  7.  Scattering effect of the airship's metal structure to the receiving antenna

    图  8  地面电磁散射对发射天线的影响

    Figure  8.  Scattering effect of the ground to the transmitting antenna

  • [1] Xiao Renzhen, Tan Weibing, Li Xiaoze, et al. A high-efficiency overmoded klystron-like relativistic backward wave oscillator with low guiding magnetic field[J]. Physics of Plasmas, 2012, 9: 123904.
    [2] 邢笑月, 黄文华, 刘小龙, 等. 大口径天线短脉冲微波辐射特性[J]. 强激光与粒子束, 2016, 28: 093007. doi: 10.11884/HPLPB201628.151205

    Xing Xiaoyue, Huang Wenhua, Liu Xiaolong, et al. Microwave radiation characteristics of large-aperture antenna excited by short pulses. High Power Laser and Particle Beams, 2016, 28: 093007 doi: 10.11884/HPLPB201628.151205
    [3] 张治强, 黄惠军, 巴涛, 等. 高功率微波天线增益测试方法研究[J]. 强激光与粒子束, 2014, 26: 063007. doi: 10.11884/HPLPB201426.063007

    Zhang Zhiqiang, Huang Huijun, Ba Tao, et al. Research on high power microwave antenna gain measurement method. High Power Laser and Particle Beams, 2014, 26: 063007 doi: 10.11884/HPLPB201426.063007
    [4] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28: 053002. doi: 10.11884/HPLPB201628.053002

    Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field. High Power Laser and Particle Beams, 2016, 28: 053002 doi: 10.11884/HPLPB201628.053002
    [5] 蒋廷勇, 高林, 刘小龙, 等. 抑制地面反射影响的高功率微波辐射场测量方法[J]. 强激光与粒子束, 2015, 27: 123007. doi: 10.11884/HPLPB201527.123007

    Jiang Tingyong, Gao Lin, Liu Xiaolong, et al. Minimizing the impact of ground reflection on high power microwave E-field measurement. High Power Laser and Particle Beams, 2015, 27: 123007 doi: 10.11884/HPLPB201527.123007
    [6] Khoury G A, Gillett J D. Airship technology[M]. Beijing: Science Press, 2007.
    [7] 陈国虎, 俞竹青, 吕学能. 无人机雷达天线稳定平台的优化设计研究[J]. 机电工程, 2015, 32(10): 1330-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201510012.htm

    Chen Guohu, Yu Zhuqing, Lü Xueneng. Optimal for radar antenna stabilized platform of an unmanned aerial vehicle. Journal of Mechanical & Electrical Engineering, 2015, 32(10): 1330-1339 https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201510012.htm
    [8] Hikert J M. Inertially stabilized platform technology concepts and principle[J]. IEEE Control Systems Magazine, 2008(12) : 26-46.
    [9] 曹乐, 魏兵, 朱湘琴. 高功率微波照射下半空间上方天线罩耦合特性[J]. 强激光与粒子束, 2015, 27: 083006. doi: 10.11884/HPLPB201527.083006

    Cao Le, Wei Bing, Zhu Xiangqin. Electromagnetic energy coupling analysis of radome over lossy half space under high power microwave. High Power Laser and Particle Beams, 2015, 27: 083006 doi: 10.11884/HPLPB201527.083006
    [10] 齐国雷, 周东方, 饶育萍, 等. FDTD方法分析高功率微波粗糙地面散射特性[J]. 强激光与粒子束, 2010, 22(9): 2092-2096. http://www.hplpb.com.cn/article/id/4759

    Qi Guolei, Zhou Dongfang, Rao Yuping. et al. Scattering properties analysis of high power microwave at rough ground with FDTD method. High Power Laser and Particle Beams, 2010, 22(9): 2092-2096 http://www.hplpb.com.cn/article/id/4759
    [11] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2011.

    Ge Debiao, Yan Yubo. Finite-difference time-domain method for electromagnetic waves. Xi'an: Xidian University Press, 2011
  • 加载中
图(8)
计量
  • 文章访问数:  1058
  • HTML全文浏览量:  226
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-02-27
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回