Mechanical design of rail cooling pipe for electromagnetic launcher
-
摘要: 为了解决电磁轨道发射器在实际应用中遇到的高热量积累问题,需要对轨道进行冷却。基于多物理场耦合仿真平台Comsol Multiphysics,从轨道结构特性和电气特性两个方面进行分析,提出了在轨道内部设置冷却管道的基本规律。建立发射器的电磁场和结构场耦合模型,利用有限元法对预紧力和电动力作用下的轨道响应进行数值计算。仿真结果表明,设置冷却管道会对轨道造成材料损失,进而影响轨道性能,冷却管道应当尽可能远离肩部与枢-轨接触面连接处,并提出了冷却管道位于轨道不同位置时,轨道的形变规律和电感梯度变化规律,为轨道热管理冷却管道的设置方案提供了理论依据。Abstract: In order to solve the high quantity of heat accumulation problems of the electromagnetic rail launcher, the rail cooling is necessary. This paper presents the basic principles for setting cooling pipes inside the rail from two aspects of mechanical performance and electrical performance analysis.An electromagnetic field and structure field model is established, the finite element method is used for numerical calculation of rail's response to the pre-tightening force and the eletromagnetic force. Simulation results show that, the cooling pipe will cause material damage, which has negative influence on rail performance; the cooling pipe should be set as far as possible away from the shoulder and armature-rail interface connection. This paper also puts forward the laws of rail deformation and inductance gradient with cooling pipe in different locations.
-
Key words:
- electromagnetic launcher /
- thermal management /
- rail cooling /
- inductance gradient /
- deformation
-
表 1 各材料力学性能参数
Table 1. Mechanical properties parameters of materials
ρ/(kg·m-3) Young’s modulus/Pa Poisson’s ratio rail 8890 1.10×1011 0.35 bolt 7850 2.06×1011 0.30 insulation 1420 1.40×1010 0.33 steel bar 8000 1.93×1011 0.29 表 2 仿真模型中轨道材料属性
Table 2. Rail material properties of simulation model
material μr σ/(S·m-1) ρ/(kg·m-3) C18200 1 4.63×107 8890 -
[1] Marshall R A, Ying W. Railguns: Their science and technology[M]. Beijing: China Machine Press, 2004: 32-35. [2] Fair H D. The past, present, and future of electromagnetic launch technology and IEEE International EML Symposium[J]. IEEE Trans Magnetics, 2013, 41(1): 1024-1027. [3] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htmLi Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development. High Voltage Engineering, 2014, 40(4): 1052-1064 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htm [4] Motes D, Keena J, Womack K, et al. Thermal analysis of high-energy railgun tests[J]. IEEE Trans Plasma Science, 2012, 40(1): 124-30. [5] Myers S H, Smith A N. Demonstration of combined spray and evaporative cooling of an electromagnetic railgun[J]. IEEE Trans Magnetics, 2009, 45(1): 396-401. [6] Jamison K A, Petresky H L, Beavers F L, et al. Thermal loading and heat removal from a sequentially fired railgun[J]. IEEE Trans Magnetics, 1995, 31(1): 314-319. doi: 10.1109/20.364669 [7] Fish S, Phipps C, Tang V. Rail heating analysis for multishot EM gun operation[J]. IEEE Trans Magnetics, 1999, 35(1): 398-402. doi: 10.1109/20.738439 [8] Kealey E R. Investigation of elliptical cooling channels for a naval electromagnetic railgun[C]//ASME 2005 International Mechanical Engineering Congress and Exposition. 2005: 89-97. [9] Lin L, Yuan W, Zhao Y, et al. Thermal analysis on electromagnetic launcher under transient conditions[J]. IEEE Trans Plasma Science, 2017, 45(7): 1476-1481. doi: 10.1109/TPS.2017.2705725 [10] Zhao H, Souza J A, Ordonez J C. Thermal model for electromagnetic launchers[J]. Therm Eng, 2008, 7(2): 59-64. [11] Zhao H, Souza J A, Ordonez J C. Three-dimensional launch simulation and active cooling analysis of a single-shot electromagnetic railgun[J]. Simulation: Transactions of the Society for Modeling and Simulation International, 2014, 90(12): 1312-1327. doi: 10.1177/0037549714553812 [12] 许镇宇, 朱景梓, 郑林庆, 等. 机械零件[M]. 北京: 人民教育出版社, 1960.Xu Zhenyu, Zhu Jingzi, Zheng Linqing, et al. Mechanical parts. Beijing: People's Education Press, 1960 [13] 王朋, 陈安生, 张会武, 等. 螺栓扭矩系数影响因素的试验研究[J]. 实验力学, 2013, 28(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201303006.htmWang Peng, Chen Ansheng, Zhang Huiwu, et al. Experimental study of the factors effecting on bolt torque coefficient. Journal of Experimental Machanics, 2013, 28(3): 307-313 https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201303006.htm [14] 赵莹, 徐蓉, 袁伟群, 等. 脉冲大电流电磁轨道发射装置特性[J]. 强激光与粒子束, 2014, 26: 095004. doi: 10.11884/HPLPB201426.095004Zhao Ying, Xu Rong, Yuan Weiqun, et al. Charateristics of high pulsed current electromagnetic rail launcher. High Power Laser and Particle Beams, 2014, 26: 095004 doi: 10.11884/HPLPB201426.095004 [15] 林灵淑, 赵莹, 袁伟群, 等. 电磁轨道发射的瞬态温度效应[J]. 高电压技术, 2016, 42(9): 2864-2869. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201609023.htmLin Lingshu, Zhao Ying, Yuan Weiqun, et al. Thermal analysis of railgun tests under transient conditions. High Voltage Engineering, 2016, 42(9): 2864-2869 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201609023.htm [16] 杨玉东, 王建新, 薛文. 轨道炮速度趋肤效应的分析与仿真[J]. 强激光与粒子束, 2011, 23(7): 1965-1968. http://www.hplpb.com.cn/article/id/5320Yang Yudong, Wang Jianxin, Xue Wen. Simulation and analysis of velocity skin effect of railgun. High Power Laser and Particle Beams, 2011, 23(7): 1965-1968 http://www.hplpb.com.cn/article/id/5320 [17] Marshall R A, 王莹. 电磁轨道炮的科学与技术[M]. 北京: 兵器工业出版社, 2006. [24] Marshall R A, Wang Ying. Railguns: their science and technology. Beijing: The Publishing House of Ordnance Industry, 2006