Accurate control technology of 24 modules in PTS
-
摘要: 介绍了Z箍缩初级实验平台“聚龙一号”装置24路模块的精确控制技术和实验结果, 通过采用24个激光触发开关来控制24路模块的精确导通, 实现了对“聚龙一号”装置输出电流波形的精确控制和调节。24个激光触发开关由12台Nd: YAG四倍频脉冲激光器来触发, 每台激光器分光后触发2路激光开关。实验结果表明: 24路激光之间的抖动小于1.0 ns, 激光开关的抖动小于1.5 ns,“聚龙一号”装置在主Marx充电电压为65 kV时, 当24路模块同步导通时,获得负载电流9.8 MA, 电流前沿上升时间(10%~90%)为75 ns;在24路模块分时放电时,实现了对电流波形的精确调节,电流前沿上升时间(10%~90%)可以拓展到600 ns, 对应的负载电流峰值为5.5 MA,电流波形的模拟值与实验测量结果基本一致,在相同负载和实验条件下,获得的电流波形具有很好的重复性。
-
关键词:
- 激光开关 /
- 触发 /
- 抖动 /
- Nd: YAG激光器
Abstract: The accurate control technology for 24 modules of the Primary Test Stand (PTS) and the experimental results are given in this paper. The synchronicity of 24 lines pulsed current is controlled by 24 laser trigger switches. The current waveform can form through adjusting laser time easily. 24 laser trigger switches are triggered by 12 Q- switched Nd: YAG fourth harmonic 266 nm laser, i.e., two laser switches are triggered by one laser. The experimental results show that the jitter of the laser trigger system is less than 1.0 ns, the jitter of switch is less than 1.5 ns. The load current is 9.8 MA and the rising time of current is 75 ns under 65 kV charging voltage, when 24 modules are triggered synchronously. The adjusting range of rising time of current get to about 600 ns, 5.5 MA in PTS. The measured result of current waveform is consistent with the simulation result. The current waveform is repeatable for same load.-
Key words:
- laser triggering switch /
- trigger /
- jitter /
- Nd: YAG laser
-
表 1 12台激光器出光时间设置和24路模块对应的触发时间
Table 1. Lasing onset time (design time) of 12 lasers and triggering time of 24 modules
laser number L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 design time/ns 1810 1670 1820 1540 1785 1720 1795 1590 1820 1810 1610 1720 odd module(1-23)/ns 1810 1820 1820 1785 1785 1795 1795 1820 1820 1610 1610 1810 even module(2-24)/ns 1720 1670 1670 1540 1540 1720 1720 1590 1590 1810 1810 1720 -
[1] 丰树平, 李洪涛, 谢卫平, 等. Z箍缩初级实验平台模块样机[J]. 强激光与粒子束, 2009, 21 (3): 463-467. http://www.hplpb.com.cn/article/id/3955Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand. High Power Laser and Particle Beams, 2009, 21 (3): 463-467 http://www.hplpb.com.cn/article/id/3955 [2] He An, Li Fengping, Deng Jianjun, et al. Primary investigation into the laser triggering multi-gap multi-channel gas switch in a single test module facility[J]. Plasma Sci Technol, 2006, 8 (5): 602-606. [3] Matzen M K, Sweeney M A, Adams R G. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12 : 055503. doi: 10.1063/1.1891746 [4] Weinbrecht E A, Bloomquist D D, McDaniel D H, et al. Update of the Z Refurbishment project (ZR) at Sandia National Laboratories[C]//16th IEEE International Pulsed Power Conference. 2007: 975-978. [5] Rogowski S T, Bliss D E, Adams R G. A study of timing jitter improvements on Z with a new laser triggering system[C]//14th IEEE International Pulsed Power Conference. 2003: 1371-1374. [6] Weinbrecht E A, Bloomquist D D, McDaniel D H. Status of the Z Refurbishment Project (ZR) at Sandia National Laboratories[C]//15th IEEE International Pulsed Power Conference. 2005: 170-173. [7] Savage M, LeChien K, Stygar W. Overview and status of the upgraded z pulsed power driver[C]//IEEE International Power Modulator and High Voltage Conference. 2008: 93. [8] Li Hongtao, Xie Weiping, Feng Shuping, et al. Development of a high-reliability low-jitter 6 MV/300 kJ Marx generator[J]. Plasma Sources Sci Technol, 2008, 17 : 015001. doi: 10.1088/0963-0252/17/1/015001 [9] Woodworth J R, Molina I, Nelson D. Green-laser-triggered water switching at 1. 6 MV[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14 (4): 951-957.