Heat transfer characteristics of mini pin-fin channels
-
摘要: 设计了槽肋比为1:2和2:1的矩形大长宽比微针肋散热器,并实验研究了去离子水在其内的流动换热性能。结果表明:当进口温度为40 ℃、微针肋槽道在雷诺数小于650、最高壁面温度低于77 ℃时,单位面积散热量可达21.32 W/cm2。当雷诺数一定时,同一个槽道壁面温度沿着流动方向不断增加、同一个位置壁面温度随着加热功率的增加而增大,局部努谢尔数沿着流动方向先减小后逐渐增加并趋于定值。当针肋流动换热长度较长时,其入口效应可以忽略,槽道平均努谢尔数随着雷诺数的增大而增大,与加热功率无关;为了更好地表达微针肋槽道内的换热特性,考虑了槽肋比、流动雷诺数等影响,拟合了去离子水在微针肋槽道内的对流换热关系式。Abstract: The heat transfer performance of deionized water flowing in the large length/width ratio pin-fin micro channel was experimentally studied with two different ratios of channel to fin. The results show that, when the Reyonolds number is less than 650 and the inlet temperature is fixed at 40 ℃, the channel can achieve a heat dissipation of 21.32 W/cm2 and the maximum wall temperature is below 77 ℃. The thermal properties of the channel can be summarized as follows for a fixed Reyonolds number: the wall temperature increases with the heating power and along with the flow direction; the local Nusselt number decreases along with the flow direction, then increases, and gradually tends to a fixed value. In the case of a long pin-fin channel, the entrance channel effect can be neglected, the average Nusselt number is independent with heating power, and only increases with Reyonolds number. Based on these results, a new correlation is proposed to evaluate heat transfer performance of pin-fins, which considers the Nusselt number as a function of the channel/fin ratio, Reyonolds number and Prandtl number.
-
Key words:
- lasers /
- pin-fin microchannel /
- heat flux /
- heat transfer /
- water
-
表 1 微针肋槽道几何参数
Table 1. Geometric parameters of pin-fin micro-channel
pin-fins fin number channel width W/mm fin width G/mm fin height H/mm pin-fins length L/mm #1 5 1 2 4 200 #2 5 2 1 4 200 表 2 实验相对误差
Table 2. Max error of experimental parameters
parameter max error/% parameter max error/% Q 2.4 Di 2.0 hx 6.9 Re 8.1 ΔTm 5.8 Nu 8.2 -
[1] 刘娇, 王君涛, 周唐建, 等. 高功率平面波导激光器研究进展及分析[J]. 强激光与粒子束, 2015, 27: 061015. doi: 10.11884/HPLPB201527.061015Liu Jiao, Wang Juntao, Zhou Tangjian, et al. Analysis and developments of high-power planar waveguide lasers. High Power Laser and Particle Beams, 2015, 27: 061015 doi: 10.11884/HPLPB201527.061015 [2] 王振国, 蒋新颖, 郑建刚, 等. 大口径端泵片状放大器的泵浦耦合系统[J]. 强激光与粒子束, 2017, 29: 091002. doi: 10.11884/HPLPB201729.170053Wang Zhenguo, Jiang Xinying, Zheng Jiangang, et al. Coupling system for laser-diode-array end-pumped slab amplifiers. High Power Laser and Particle Beams, 2017, 29: 091002 doi: 10.11884/HPLPB201729.170053 [3] 田长青, 徐洪波, 曹宏章, 等. 高功率固体激光器冷却技术[J]. 中国激光. 2009, 36(7): 1686-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200907012.htmTian Changqing, Xu Hongbo, Cao Hongzhang, et al. Cooling technology for high-power solid-state laser. Chinese Journal of Lasers, 2009, 36(7): 1686-1692 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200907012.htm [4] 董延涛, 赵智刚, 刘崇, 等. 热效应对固体激光器偏振特性和基模输出特性的影响[J]. 中国激光, 2009, 36(7): 1759-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200907028.htmDong Yantao, Zhao Zhigang, Liu Chong, et al. Influence of thermal effects on polarizability and output character of TEM00-mode of solid state laser. Chinese Journal of Lasers, 2009, 36(7): 1759-1765 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200907028.htm [5] 徐洪波, 钱春潮, 邵双全, 等. R600a喷雾冷却系统换热过程[J]. 强激光与粒子束, 2015, 27: 071001. doi: 10.11884/HPLPB201527.071001Xu Hongbo, Qian Chunchao, Shao Shuangquan, et al. Heat transfer process of R600a spray cooling system. High Power Laser and Particle Beams, 2015, 27: 071001 doi: 10.11884/HPLPB201527.071001 [6] 程勇, 郭延龙, 何志祝, 等. 相变散热技术在小型高效半导体抽运激光器中的应用研究[J]. 中国激光, 2016, 43: 0102005. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201601005.htmCheng Yong, Guo Yanlong, He Zhizhu, et al. Application research of phase change material heat removal technology for compact high efficiency diode pumped laser. Chinese Journal of Lasers, 2016, 43: 0102005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201601005.htm [7] Xiang Jianhua, Zhang Chunliang, Jiang Fan, et al. Fabrication and testing of phase change heat sink for high power LED. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 2066-2071. doi: 10.1016/S1003-6326(11)60974-6 [8] Dixit T, Ghosh I. Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids[J]. Renewable and Sustainable Energy Reviews, 2015, 41(sC): 1298-1311. [9] Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. doi: 10.1109/EDL.1981.25367 [10] 卢鹏, 潘艳秋, 俞路, 等. 固体激光微通道冷却器内流动特性的数值模拟[J]. 强激光与粒子束, 2014, 26: 051008. doi: 10.11884/HPLPB201426.051008Lu Peng, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow characteristic in solid-state laser microchannel cooler. High Power Laser and Particle Beams, 2014, 26: 051008 doi: 10.11884/HPLPB201426.051008 [11] 刘东, 蒋斌, 陈飞. 微方肋冷却系统的换热特性[J]. 强激光与粒子束, 2013, 25(2): 335-340. doi: 10.3788/HPLPB20132502.0335Liu Dong, Jiang Bin, Chen Fei. Heat transfer characteristics of micro-fin cooling system. High Power Laser and Particle Beams, 2013, 25(2): 335-340 doi: 10.3788/HPLPB20132502.0335 [12] Peng X F, Peterson G P. Convective heat transfer and flow friction for water flow in microchannel structures[J]. International Journal of Heat & Mass Transfer, 1996, 39(12): 2599-2608. [13] Peng X F, Peterson G P. The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels[J]. International Journal of Heat & Mass Transfer, 1995, 38(4): 755-758. [14] Kim B. An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels[J]. International Journal of Heat and Fluid Flow, 2016, 62: 224-232. doi: 10.1016/j.ijheatfluidflow.2016.10.007 [15] 潘娜娜, 潘艳秋, 俞路, 等. 微通道冷却器内流动和传热特性的数值模拟[J]. 强激光与粒子束, 2016, 28: 021002. doi: 10.11884/HPLPB201628.021002Pan Nana, Pan Yanqiu, Yu Lu, et al. Numerical simulation of flow and heat transfer characteristics in microchannel cooler. High Power Laser and Particle Beams, 2016, 28: 021002 doi: 10.11884/HPLPB201628.021002 [16] 郭春海, 陈希良, 杨旸, 等. 微通道换热器的数值模拟和结构优化[J]. 计算机辅助工程, 2015, 24(4): 61-67. doi: 10.13340/j.cae.2015.04.013Guo Chunhai, Chen Xiliang, Yang Yang, et al. Numerical simulation and structural optimization on microchannel heat exchangers. Computer Aided Engineering, 2015, 24(4): 61-67 doi: 10.13340/j.cae.2015.04.013 [17] 刘东, 蒋斌. 结构形式对微槽内流动换热特性的影响[J]. 激光与光电子学进展, 2013, 50: 041202. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201304016.htmLiu Dong, Jiang Bin. Effect of channel structures on the fluid flow and heat transfer in micro-channels. Laser & Optoelectronics Progress, 2013, 50: 041202 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201304016.htm [18] Liu D, Liu M, Xing D, et al. Flow and heat transfer performance of a mini-channel radiator with cylinder disturbed flow[J]. Experimental Thermal & Fluid Science, 2011, 35(6): 1202-1208. [19] Liu Minghou, Liu Dong, Xu Sheng, et al. Experimental study on liquid flow and heat transfer in micro square pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2011, 54(25): 5602-5611. [20] 刘东, 蒋斌, 刘明侯. 进出口方式对槽道流体分配和换热的影响[J]. 中国激光, 2012, 39: 1003005. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201210010.htmLiu Dong, Jiang Bin, Liu Minghou. Inlet/outlet arrangement effect on the flow distribution and heat transfer in mini-channels. Chinese Journal of Lasers, 2012, 39: 1003005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201210010.htm