留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏表示的核素能谱特征提取及核素识别

张江梅 季海波 冯兴华 王坤朋

张江梅, 季海波, 冯兴华, 等. 基于稀疏表示的核素能谱特征提取及核素识别[J]. 强激光与粒子束, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435
引用本文: 张江梅, 季海波, 冯兴华, 等. 基于稀疏表示的核素能谱特征提取及核素识别[J]. 强激光与粒子束, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435
Zhang Jiangmei, Ji Haibo, Feng Xinghua, et al. Nuclide spectrum feature extraction and nuclide identification based on sparse representation[J]. High Power Laser and Particle Beams, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435
Citation: Zhang Jiangmei, Ji Haibo, Feng Xinghua, et al. Nuclide spectrum feature extraction and nuclide identification based on sparse representation[J]. High Power Laser and Particle Beams, 2018, 30: 046003. doi: 10.11884/HPLPB201830.170435

基于稀疏表示的核素能谱特征提取及核素识别

doi: 10.11884/HPLPB201830.170435
基金项目: 

国家自然科学基金项目 61501385

四川省科技支撑计划项目 2016GZ0210

四川省科技厅应用基础项目 2016JY0242

详细信息
    作者简介:

    张江梅(1975—), 女,副教授,博士,从事核电子学与探测技术研究;zjm@swust.edu.cn

  • 中图分类号: TL817

Nuclide spectrum feature extraction and nuclide identification based on sparse representation

  • 摘要: 提出了一种基于稀疏表示的核素能谱特征提取方法,其实质是将核素能谱在区分性最好的稀疏原子上进行投影。利用稀疏分解方法对核素能谱进行稀疏分解,提取分解系数向量作为表征核素的特征向量,通过模式识别分类方法建立分类模型实现核素识别。与传统稀疏分解方法的区别在于:在能谱稀疏分解过程中按照稀疏字典中的原子排列顺序顺次进行分解;其次,分解目的在于特征提取,即最终提取到的特征对不同核素具有可区分性,并不要求核素能谱的重构精度。在241Am, 133Ba, 60Co, 137Cs, 131I和152Eu共6种核素1200个能谱数据上进行了核素识别实验,7种不同分类算法的平均识别率达到91.71%,实验结果的统计分析表明,本文提出的特征提取方法识别准确率显著地高于两种传统核素能谱特征提取方法准确率。
  • 图  1  稀疏分解系数

    Figure  1.  Coefficients of sparse decomposition

    表  1  三种特征提取方法在模拟核素上的识别结果

    Table  1.   Classification results of the three feature extraction methods

    methods sparse representation(rank) SG +derivative(rank) TS+derivative(rank)
    KNN 97.11%(1) 88.75% (2) 72.67% (3)
    NavieBayes 88.57%(1) 44.58% (2) 38.92% (3)
    SMO 72.86%(1) 19.50% (3) 21.83% (2)
    PART 96.00%(1) 91.25% (2) 78.00% (3)
    J48 96.86%(1) 90.83% (2) 74.42% (3)
    CART 96.29%(1) 89.50% (2) 76.00% (3)
    RBFNetwork 94.29%(1) 73.17% (2) 58.00% (3)
    mean 91.71%(1) 71.08%(2.14) 59.98%(2.86)
    下载: 导出CSV

    表  2  Holm检验

    Table  2.   Holm test

    i methods z=(Ri-R1)/SE p α/(k-i)
    1 TS+derivative peak seeking (2.86-1)/0.535 4=3.479 7 0.000 5 0.025 0
    2 SG+derivative peak seeking (2.14-1)/0.535 4=2.132 7 0.032 9 0.050 0
    下载: 导出CSV
  • [1] Portnoy D, Fisher B, Phifer D. Data and software tools for gamma radiation spectral threat detection and nuclide identification algorithm development and evaluation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 274-280. doi: 10.1016/j.nima.2014.11.010
    [2] Burr T, Hammada M. Radio-isotope identification algorithms for NaI γ spectra[J]. Algorithms, 2009, 2(1): 339-360. doi: 10.3390/a2010339
    [3] Uher J, Roach G, Tickner J. Peak fitting and identification software library for high resolution gamma-ray spectra[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619(1): 457-459.
    [4] 易义成, 宋朝晖, 管兴胤, 等. 溴化镧高剂量率线性响应范围的测定[J]. 强激光与粒子束, 2016, 29: 096002. doi: 10.11884/HPLPB201628.151241

    Yi Yicheng, Song Chaohui, Guan Xingying, et al. Measurement of linear response upper limit for LaBr3 to pulsed gamma radiation. High Power Laser and Particle Beams, 2016, 29: 096002 doi: 10.11884/HPLPB201628.151241
    [5] 安力, 何铁, 郑普, 等. 伴随粒子法γ能谱本底测量技术[J]. 强激光与粒子束, 2013, 25(11): 3045-3049. doi: 10.3788/HPLPB20132511.3045

    An Li, He Tie, Zheng Pu, et al. Research on γ background spectra in associated particle technique. High Power Laser and Particle Beams, 2013, 25(11): 3045-3049 doi: 10.3788/HPLPB20132511.3045
    [6] 何剑锋. 低能量分辨率γ能谱数据解析方法研究[D]. 成都: 成都理工大学, 2013.

    He Jianfeng. A study for decomposition method of lower-energy resolution gamma-energy resolution gamma-ray spectra data. Chengdu: Chengdu University of Technology, 2013
    [7] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [8] Aha D, Kibler D, Albert M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66.
    [9] George H, Langley P. Estimating continuous distributions in Bayesian classifiers[C]//Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1998: 338-345.
    [10] Platt J. Fast training of support vector machines using sequential minimal optimization[M]. Massachusetts: MIT Press, 1999: 185-208.
    [11] Frank E, Witten I. Generating accurate rule sets without global optimization[C]//The Fifteenth International Conference on Machine Learning. 1998: 144-151.
    [12] Quinlan J. C4.5: programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993.
    [13] Breiman L, Friedman J, Olshen R, et al. Classification and regression trees[M]. Boca Raton: CRC Press, 1984.
    [14] Bouchoux S, Paindavoine M. Implementation of pattern recognition algorithm based on RBF neural network[C]//Proc of SPIE. 2002, 8(18): 4572-4581.
    [15] Demsar J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  1455
  • HTML全文浏览量:  370
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2017-11-30
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回