留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工业CT线性尺寸测量的不确定度分析

付康 倪培君 唐盛明 郭智敏 齐子诚

付康, 倪培君, 唐盛明, 等. 基于工业CT线性尺寸测量的不确定度分析[J]. 强激光与粒子束, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439
引用本文: 付康, 倪培君, 唐盛明, 等. 基于工业CT线性尺寸测量的不确定度分析[J]. 强激光与粒子束, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439
Fu Kang, Ni Peijun, Tang Shengming, et al. Uncertainty analysis of industrial CT linear size measurement[J]. High Power Laser and Particle Beams, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439
Citation: Fu Kang, Ni Peijun, Tang Shengming, et al. Uncertainty analysis of industrial CT linear size measurement[J]. High Power Laser and Particle Beams, 2018, 30: 055103. doi: 10.11884/HPLPB201830.170439

基于工业CT线性尺寸测量的不确定度分析

doi: 10.11884/HPLPB201830.170439
基金项目: 

国家自然科学基金项目 61471411

宁波市自然科学基金项目 2016A610247

宁波国际科技合作项目 2015D10005

装备预研领域基金项目 61409230305

详细信息
    作者简介:

    付康(1992-),男,硕士研究生,从事工业CT无损检测技术研究;fukang1101@sina.com

  • 中图分类号: TG115.28

Uncertainty analysis of industrial CT linear size measurement

  • 摘要: 针对加速器工业CT线性尺寸测量的不确定度评定,建立了工业CT尺寸测量模型,对测量中不确定度的主要来源进行分析,基于测量不确定度表示指南(GUM)法对工业CT线性尺寸测量不确定度评定进行研究。以6 MeV高能工业CT系统尺寸测量为例,分析了长度样块线性尺寸测量各主要的不确定度分量,对尺寸测量的不确定度进行评定,最终得出具有包含概率为0.99的扩展不确定度为0.09 mm,结果体现了工业CT尺寸测量的精度和可靠性,为工业CT尺寸测量结果的可靠度提供参考依据。
  • 图  1  工业CT线性尺寸测量示意图

    Figure  1.  Industrial CT linear dimension measurement

    图  2  CT值曲线图

    Figure  2.  CT value of curve

    图  3  6 MeV高能工业CT检测系统

    Figure  3.  6 MeV high energy industrial CT detection system

    图  4  标准试块及检测分布示意图

    Figure  4.  Standard blocks and detection distribution diagram

    表  1  采样点的灵敏系数

    Table  1.   Sensitivity of the sampling points

    measuring point a transfer factor $ {\left( {\frac{{\partial g}}{{\partial {a_i}}}} \right)}$ e transfer factor $ {\left( {\frac{{\partial g}}{{\partial {e_i}}}} \right)}$ c transfer factor $ {\left( {\frac{{\partial g}}{{\partial {c_i}}}} \right)}$ d transfer factor $ {\left( {\frac{{\partial g}}{{\partial {d_i}}}} \right)}$ s transfer factor $ {\left( {\frac{{\partial g}}{{\partial {s_i}}}} \right)}$
    1 -0.373 -0.414 -0.404 0.414 0.827
    2 -0.280 -0.322 -0.313 0.322 0.642
    3 -0.305 -0.347 -0.339 0.347 0.692
    4 -0.258 -0.300 -0.290 0.300 0.596
    5 -0.319 -0.378 -0.328 0.378 0.724
    6 -0.352 -0.390 -0.377 0.390 0.778
    7 -0.765 -0.688 -0.586 0.688 1.399
    8 -0.659 -0.631 -0.560 0.631 1.268
    9 -0.406 -0.390 -0.329 0.390 0.784
    10 -0.336 -0.360 -0.332 0.360 0.716
    下载: 导出CSV

    表  2  校准试块的测量值

    Table  2.   Measured values of the test block

    No. calibration value, xcal/mm measurement, yi/mm
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    9.001
    9.001
    9.001
    9.001
    9.001
    9.001
    9.001
    9.001
    9.001
    9.001
    9.039
    9.021
    9.025
    9.027
    9.025
    9.036
    9.016
    9.038
    9.029
    9.024
    下载: 导出CSV

    表  3  工业CT尺寸测量的不确定分量汇总表

    Table  3.   Summary of uncertain components for industrial CT dimensional measurements

    input quantity Xi estimated value xi standard uncertainty u(xi) probability distribution sensitivity coefficient uncertainty component/μm
    l 10.034 mm 0.018 mm normal 1 18
    Δt 0 1.15 ℃ rectangular 0.115 μm·℃-1 0.132
    δr 0 0.014 mm rectangular 1 14
    δv 0 0.462 μm rectangular 1 0.462
    b 0.027 mm 0.027 mm normal -1 27
    下载: 导出CSV
  • [1] 庄天戈. CT理论与算法[M]. 上海: 上海交通大学出版社, 1992.

    Zhuang Tiange. CT theory and algorithm. Shanghai: Shanghai Jiao Tong University Press, 1992
    [2] 张朝宗, 郭志平. 工业CT技术和原理[M]. 北京: 科学出版社, 2009.

    Zhang Chaozong, Guo Zhiping. Industrial CT technology and principles. Beijing: Science Press, 2009
    [3] Badakhshannoory H, Saeedi P. Automatic liver segmentation from CT scans using multi-layer segmentation and principal component analysis[J]. Advances in Visual Computing, 2010, 6454: 342-350.
    [4] 张俊哲. 无损检测技术及其应用[M]. 北京: 科学出版社, 2010.

    Zhang Junzhe. Nondestructive testing technology and its application. Beijing: Science Press, 2010
    [5] Hsieh J. 计算机断层成像技术——原理、设计、伪像和进展[M]. 北京: 科学出版社, 2006: 1-71.

    Hsieh J. Computed tomography, principle, design, artifacts and recent advances. Beijing: Science Press, 2006: 1-71
    [6] European Committee for Standardization. ISO/DIS 15708-1, Non-destructive testing—Radiation methods—computed tomography—Part1: Principle, equipment and samples[S]. Geneva: International Organization for Standardization, 2016.
    [7] 平雪良, 周儒荣, 党耀国. 未知自由曲面三坐标测量新方法[J]. 机械科学与技术, 2005, 24(4): 491-493. doi: 10.3321/j.issn:1003-8728.2005.04.032

    Ping Xueliang, Zhou Rurong, Dang Yaoguo. A new method of coordinate measurement for unknown free-form surfaces. Mechanical Science and Technology for Aerospace Engineering, 2005, 24(4): 491-493 doi: 10.3321/j.issn:1003-8728.2005.04.032
    [8] De Chiffre L, Carmignato S, Kruth J P. Industrial applications of computed tomography[J]. CIRP Annals-Manufacturing Technology, 2014, 63: 655-677. doi: 10.1016/j.cirp.2014.05.011
    [9] 刘艳萍, 马燕, 张晶, 等. 工业技术在炸药装药质量检测中的应用[J]. 计测技术, 2013, 33: 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC2013S1023.htm

    Liu Yanping, Ma Yan, Zhang Jing, et al. Application of industrial technology in quality inspection of explosive charge. Metrology & Measurement Technology, 2013, 33: 69-72 https://www.cnki.com.cn/Article/CJFDTOTAL-HKJC2013S1023.htm
    [10] Bartscher M, Ehrig K, Goebbels J, et al. Dimensional control of micro components with synchrotron computed tomography[C]//AIP Conference Proceedings. 2010, 1221(1): 164-171.
    [11] Bartscher M, Hilpert U, Fiedler D. Determination of the measurement uncertainty of computed tomography measurements using a cylinder head as an example[J]. Technisches Messen, 2008, 75(3): 178-186. doi: 10.1524/teme.2008.0822
    [12] Batenburg K J, Sijbers J. Adaptive thresholding of tomograms by projection distance minimization[J]. Pattern Recognition, 2009, 42(10): 2297-2305. doi: 10.1016/j.patcog.2008.11.027
    [13] Bartscher M, Krystek M. Method for a traceable geometry assessment of arbitrarily shaped sculptured surfaces[C]//10th Int Symp on Measurement and Qaulity Control(ISMQC). 2010.
    [14] Dewulf W, Kiekens K, Tan Y. Uncertainty determination and quantification for dimensional measurements with industrial computed tomography[J]. CIRP Annals—Manufacturing Technology, 2013, 62: 535-538. doi: 10.1016/j.cirp.2013.03.017
    [15] 胡林福. 测量不确定度与误差的区别[J]. 质量技术监督研究, 2009(1): 55-56. https://www.cnki.com.cn/Article/CJFDTOTAL-FJXX200901017.htm

    Hu Linfu. Differences between measurement uncertainty and error. Quality and Technical Supervision Research, 2009(1): 55-56 https://www.cnki.com.cn/Article/CJFDTOTAL-FJXX200901017.htm
    [16] 胡巧开, 邓真丽, 付勤. 不确定度及其应用探讨[J]. 湖北师范学院学报, 2010, 30(2): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF201002024.htm

    Hu Qiaokai, Deng Zhenli, Fu Qin. Discussion on uncertainty and its application. Journal of Hubei Normal University, 2010, 30(2): 104-109 https://www.cnki.com.cn/Article/CJFDTOTAL-HBSF201002024.htm
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1394
  • HTML全文浏览量:  376
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2017-12-26
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回