Simulation of Wolter microscope imaging system by ray-tracing
-
摘要: 利用光学设计软件ZEMAX模拟Wolter显微镜对点光源成像。在只考虑几何光学成像的条件下,分三种情况讨论:两曲面同轴共焦点,两曲面不同轴,两曲面同轴不共焦点,对点源通过Wolter系统成像分别进行了光线追踪模拟。通过模拟,定量给出了Wolter显微镜的焦深和景深,分析了处于不同视场点源所成的像,以及两个曲面不同轴时和不共焦点的情况下点源所成的像, 得知Wolter显微镜对物像距的要求很严格,两曲面的不同轴度和两曲面的不共焦点对成像影响非常大,这些模拟结果为Wolter显微镜的成像分析提供了依据。Abstract: The optical design software ZEMAX is used to simulate the imaging of a point source for Wolter microscope. Considering the imaging of geometrical optics only, three instances are considered, including the two surfaces coaxial and cofocal, non-coaxial, and coaxial but not confocal. The imaging of a point source is discussed respectively. The depth of focus and the depth of field are given. The imaging of a point source in different fields is also analyzed. It is concluded that Wolter microscope is very strict with the object distance and image distance. The influence of the two surfaces' non-coaxiality and non-confocality is much great on imaging. These results provides basis for imaging analysis of Wolter microscope.
-
Key words:
- Wolter microscope /
- ZEMAX simulation /
- ray-tracing /
- field
-
光波在大气中传输时会受到大气湍流的影响,大气湍流的扰动频率通常可以达到上百赫兹。并且,湍流大气中光波传输的理论研究与技术应用都涉及光波或波前时间频谱的高频特征[1]。通常通过测量大气温度场的起伏获取大气光学湍流谱,而高空间波数、位于耗散区的湍流谱不易获得。温度脉动仪是一种测量大气湍流特性的常用仪器,其工作原理为:通过测量温度脉动,可以得到温度起伏谱和湍流的折射率结构常数。常用温度脉动仪一般选取的感应材料为铂丝,它具有响应快速、线性度好、体积小等优点[2]。一般选取直径20 μm或者10 μm的铂丝作为感应材料[3],然而,由于铂丝的响应频率等方面的限制,常规温度脉动仪只能获取20 Hz以下频率的温度脉动信号,无法研究大气一维温度谱的高频特征;美国空军实验室使用两款探空温度脉动仪开展了高空大气湍流强度廓线对比测量实验[4],根据文献提供的参数计算分析,仪器具有较高的响应频率,但是其探头电流增温效应较大,对测量结果的准确性产生一定影响[5]。钨丝具有类似铂丝的线性温度特性,且韧性好、性价比高、温度系数较大,本文提出了一种温度脉动仪的改进设计方案,采用直径6 μm、电阻值20 Ω的钨丝作为感应材料,它在环境温度293 K、风速2 m/s的条件下,响应频率可以达到133 Hz;流过钨丝的电流只有0.5 mA,电流增温对结果影响小;它具有探头体积小、分辨率高、噪声低和受环境影响小等特点。利用改进后的温度脉动仪对实际大气温度起伏进行了观测实验,得到了更宽频率范围的温度起伏信号,获得了不同湍流强度下的温度起伏功率谱,并对其谱幂率进行了统计分析。
1. 温度脉动仪改进设计
在满足局地均匀各向同性的条件下, 根据Kolmogorov理论[6], 大气中两点间温度的空间结构函数为
DT(r)=⟨[T(x1)−T(x2)]2⟩=C2Tr2/3(l0≪r≪L) (1) 式中:空间结构函数用空间两点温差的时间统计平均表示; CT2是温度结构常数。
大气湍流强度一般用折射率结构常数Cn2表征,Cn2与CT2的关系为
C2n=(79×10−6pT2)2C2T (2) 式中: p是压强,单位hPa; T是热力学温度,单位K。通过测量空间中两点的温度脉动,并结合式(1)~(2),可以计算出湍流的空间结构参数。
改进之前的温度脉动仪电路使用单个集成运放实现加减运算功能,它存在两个缺点,一是电阻的选取和调整不方便,二是对于每个信号源的输入电阻均较小[7],影响信号传输的准确性。综合考虑带宽和降噪的要求,本设计采用非平衡电桥和两级差分放大电路对信号进行采集和放大,它具有信号输入电阻大、电阻选取方便和高共模抑制比(CMRR)等特点[8],可降低电路噪声,减少电子元器件对信号的影响,保证信号的准确性。图 1是改进前后的信号采集电路,图中R3和R4是感应金属丝,V0是经过恒压处理后的电压源。
传感器的响应频率和风速、传感器的形状以及材料有关,金属丝可看成直径为d,长度一定的圆柱形。表 1给出了在风速2 m/s的条件下,直径6 μm的钨丝的时间常数和响应频率等参数,计算用变量包括:风速u, 钨丝直径d, 粘滞系数υ, 干空气导热系数λg, 钨丝密度ρ, 钨丝比热容c。
表 1 钨丝参数(293 K, 2 m/s,105 Pa)Table 1. Parameters of tungsten wire(293 K, 2 m/s, 105 Pa)Re Nu h/(W·m-2·K-1) M/ms fs/Hz R/Ω ρ0/(Ω·mm2·m-1) d/μm 0.797 0.732 3 159.8 1.194 133.29 20 0.055 6 温度脉动信号属于交流信号,所以需要滤除信号中的直流成分,为降低高频噪声对信号的影响,结合表 1给出的直径6 μm的钨丝响应频率为133 Hz,经过计算分析,设计出通带频率范围为0.084~186 Hz的有源带通滤波器,对信号进行滤波处理。
为验证仪器测量信号的准确性,将振幅为100 mV、频率为60 Hz的源信号衰减104倍,模拟微弱信号,输入到采集电路中,将输出信号与源信号进行对比,如图 2所示,结果表明,经过采集系统的信号没有失真,只有一定时延,对信号采集没有影响。将整个仪器放置在恒温、恒压环境中进行仪器本底噪声测量实验,输出结果按照电压和温度转换关系转化为温度值,测得整个仪器本底噪声等效的温度脉动在0.001 7 K范围内,结果如图 3所示。
综上,改进后的温度脉动仪满足测量大气温度起伏的需求。
2. 温度起伏功率谱
在局部均匀各向同性假定的条件下,例如大气温度起伏的一维谱满足-5/3定律[9-10],即
ST(k)=0.25C2Tk−5/3,L0≥l≥l0 (3) 式中: CT2表示温度结构常数;波数k=2π/l,其中l为温度起伏的空间尺度;L0为湍流的外尺度;l0为湍流的内尺度。式(3)表示的就是所谓的Kolmogorov湍流谱,是波在随机介质中传播理论的一个基础[11]。
根据泰勒假定,频率和波数之间有如下关系
k=2πf/v 式中: f为频率;v表示风速。只要分析频率谱就能确定温度脉动功率谱是否和Kolmogorov的-5/3定律一致[3]。
使用传统温度脉动仪测量温度脉动,其温度谱反映的仅是整个谱区间的一部分,大部分针对温度起伏谱特征的研究主要集中在低频部分,而对于更高频率范围内温度起伏谱特征的研究很少。根据上一节的描述,本次实验使用的温度脉动仪测量频率上限可以达到190 Hz,涵盖了大部分大气温度起伏范围,有助于研究温度起伏谱高频部分的幂率特征。
2018年10月2日至10月6日开展了实际大气温度谱的测量实验,取得大约6700个温度起伏谱。图 4分别是弱湍流、中等湍流和强湍流时的温度起伏谱,分析温度谱发现:温度谱的形状和湍流强度有一定关系,具体表现在,弱湍流时,温度谱的频谱范围小,相较于-5/3谱偏平,随着湍流增强,频率范围变大,温度谱变陡,但幂率不会小于-3。这与文献[12]的结论类似。相较于之前的研究,本次实验探测到的温度起伏谱频率范围更宽,而且依然具有幂率不变的特性。
为研究温度谱幂率的统计特征,对所有温度起伏谱进行线性拟合,并进行幂率统计。考虑到有限的采样时间所造成的谱型有细小差别以及线性拟合存在误差等不确定因素[3],我们把幂率为-5/3±0.2的谱都认为符合-5/3定律。为便于统计,将所有温度起伏谱在0.1~35 Hz频率范围内线性拟合。统计结果如表 2所示,图 5是温度谱幂率的分布情况。从统计结果可以看出,在0.1~35 Hz频率范围内有52%的温度谱幂率在-5/3±0.2范围内,但是,仍有很多情况不符合Kolmogorov理论,幂率偏离了理论值,表明实际大气中有大量非K湍流存在,这与文献[3, 12-13]的结果一致。
表 2 6 μm直径的钨丝不同幂率温度谱出现的概率Table 2. Probability distributions of power law measurement with 6 μm tungsten wirepower law k probability/% >-5/3+0.20 1.6 -5/3-0.20~-5/3+0.20 52.2 -5/3-0.20 46.2 在本次实验期间获得的温度起伏谱中,有许多温度谱在高频部分出现拐点, 以更陡的斜率下降,图 6显示了在不同时刻具有拐点的温度起伏谱。分析发现,在拐点之前,温度起伏谱的幂率在-5/3附近,而拐点之后的幂率严重偏离了-5/3。对比图 6(a),(b),拐点出现的位置和湍流强度有一定的关系。但是,湍流强度并不是拐点向高频方向移动的充分条件,可能和风速、大气层结稳定度等因素有关。实际大气中风速均匀性的假设、冻结湍流假设不能很好地符合,因此频谱的实际分布要比理论预期的复杂[14]。有资料表明,即使充分发展的湍流,温度场的统计特征对大尺度能量的注入、温度梯度和温度速度相关性也特别敏感[15],其表现之一就是随着气候和其他条件的不同,湍流能量谱分布有所变化[13]。
3. 结论
使用宽频带的温度脉动仪对真实大气温度起伏进行了观测实验,结果表明:改进后的温度脉动仪可以探测到更高频率的温度起伏信号,发现湍流具有丰富的高频信息,在高频区间依旧存在幂率不变的特性, 且温度起伏功率谱的形状和湍流强度有一定关系。部分温度起伏功率谱在高频部分出现拐点,而且出现的位置和湍流强度有一定关系,但是拐点出现的原因、影响其位置的因素较为复杂。实际大气中有大量的非Kolmogorov湍流存在,研究非K大气湍流本身特性,对湍流理论、非K大气湍流中光传播效应的数值模拟、非K大气湍流对各种光电工程的影响等方面的研究具有重要意义[16],本文成果可以为建立用于光传播数值模拟的非K湍流模型提供有力支持,并为数值模拟结果的验证工作提供实际测量数据。大气温度起伏谱的高频特性、影响温度谱幂率的因素、温度谱幂率的空间分布特征等问题,还需要进一步的研究。
致谢: 感谢曾宗泳老师在电路设计方面的指导,感谢吴晓庆老师在温度谱分析方面的建议。 -
-
[1] Wolter H. Generalized Schwarzs Childsche systems as reflection optics[J]. Ann Phys, 1952, 10: 94. [2] Price R H. X ray microscopy using grazing incidence reflection optics[J]. AIP Conf Proc, 1981, 75: 189. doi: 10.1063/1.33166 [3] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics for ignition and gain[J]. Phys Plasmas, 1995, 2(11) : 3933-4024. doi: 10.1063/1.871025 [4] 胡家升. 光学工程导论[M]. 大连: 大连理工大学出版社, 2002: 800-816.Hu Jiasheng. Introduction to optical engineering. Dalian: Dalian University of Technology Press, 2002: 800-816 [5] 缪文勇. R-T流体力学不稳定性与混合诊断技术[M]//中国工程物理研究院年报. 1998.Miao Wenyong. The hybrid diagnosis technology of the R-T hydrodynamics instability//Annual Report of China Academy of Engineering Physics. 1998 [6] Janes E H, Andrey K, Patrick L. Grazing-incidence hyperboloid-hyperboloid designs for wide-field X-ray imaging applications[J]. Appl Opt, 2001, 40(1) : 136. doi: 10.1364/AO.40.000136 期刊类型引用(1)
1. 崔恒,籍颖,栗功. 3D激光全息投影在公共空间光线系统设计中的应用. 激光杂志. 2021(11): 154-158 . 百度学术
其他类型引用(1)
-