留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高功率容量Rotman透镜设计与仿真

周鑫 胡进光 廖勇

周鑫, 胡进光, 廖勇. X波段高功率容量Rotman透镜设计与仿真[J]. 强激光与粒子束, 2018, 30: 093001. doi: 10.11884/HPLPB201830.170501
引用本文: 周鑫, 胡进光, 廖勇. X波段高功率容量Rotman透镜设计与仿真[J]. 强激光与粒子束, 2018, 30: 093001. doi: 10.11884/HPLPB201830.170501
Zhou Xin, Hu Jinguang, Liao Yong. Design and simulation of X-band high power capacity Rotman lens[J]. High Power Laser and Particle Beams, 2018, 30: 093001. doi: 10.11884/HPLPB201830.170501
Citation: Zhou Xin, Hu Jinguang, Liao Yong. Design and simulation of X-band high power capacity Rotman lens[J]. High Power Laser and Particle Beams, 2018, 30: 093001. doi: 10.11884/HPLPB201830.170501

X波段高功率容量Rotman透镜设计与仿真

doi: 10.11884/HPLPB201830.170501
详细信息
    作者简介:

    周鑫(1992-), 男,硕士,主要从事高功率微波研究工作;zhouxmail@126.com

  • 中图分类号: TN821.5

Design and simulation of X-band high power capacity Rotman lens

  • 摘要: 介绍了Rotman透镜的工作原理,给出了透镜的设计方程。为适应天线在高功率水平下工作的需求,使用平板型设计,以提升功率容量,采用宽度渐变的方式改善了Rotman透镜的传输线分布方式。设计了一款工作在9.4 GHz、拥有9个输入端口和9个输出端口的高功率容量Rotman透镜天线。仿真结果表明,天线的扫描角度可以达到±22°,各方向增益大于16.5 dBi,效率约为60%,功率容量可达到0.9 GW。
  • 图  1  Rotman透镜原理

    Figure  1.  Principle of Rotman lens

    图  2  Rotman透镜仿真模型图

    Figure  2.  Simulation model of a Rotman lens before and after optimization

    图  3  传输线的小型化

    Figure  3.  Miniaturization of transmission line

    图  4  各端口的相位及归一化幅度分布

    Figure  4.  Phase and normalized amplitude distribution for each output port

    图  5  Rotman透镜的方向图

    Figure  5.  Radiation pattern of Rotman lens

    图  6  Rotman透镜的增益

    Figure  6.  Gain of Rotman lens

    图  7  Rotman透镜的反射系数

    Figure  7.  Reflection distribution of Rotman lens

    图  8  Rotman透镜电场分布

    Figure  8.  Electric field distribution of Rotman lens

    表  1  不同输入下的归一化端口幅度标准差与效率

    Table  1.   Standard deviation of normalized amplitude and efficiency for each input port

    input port max amplitude min amplitude standard deviation efficiency /%
    i1 0.302 2 0.129 3 0.051 0 59.3
    i2 0.313 3 0.207 6 0.028 6 64.57
    i3 0.278 4 0.220 6 0.017 4 60.98
    i4 0.299 9 0.248 7 0.016 0 63.83
    i5 0.319 6 0.253 9 0.020 3 67.55
    下载: 导出CSV
  • [1] Rotman W, Turner R F. Wide-angle microwave lens for line source applications[J]. IEEE Trans Antennas Propag, 1963, 11(6): 623-632. doi: 10.1109/TAP.1963.1138114
    [2] Musa L, Smith M S. Microstrip port design and sidewall absorption for printed Rotman lenses[J]. IEE Proceedings H-Microwaves, Antennas and Propagation, 1989, 136(1): 53-58. doi: 10.1049/ip-h-2.1989.0009
    [3] Yang Xuesong, Wang Bingzhong, Zhang Yong. Pattern reconfigurable quasi-yagi microstrip antenna using a photonic band gap structure[J]. Microw Opt Tech Lett, 2004, 42(4) : 296-297. doi: 10.1002/mop.20283
    [4] Ferreira F I L, Mosso M M. A new concept of microstrip Rotman lens design[C]//2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). 2016: 1-5.
    [5] Attaran A, Rashidzadeh R, Kouki A. 60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology[J]. IEEE Trans Antennas Propag, 2016, 64(12): 5172-5180. doi: 10.1109/TAP.2016.2618479
    [6] Tekkouk K, Ettorre M, Sauleau R. Multilayer SIW Rotman lens antenna in 24 GHz band[C]//10th European Conference on Antennas and Propagation (EuCAP). 2016: 1-4.
    [7] 刘熠志, 李峰. 波导型Rotman透镜天线的设计与小型化[C]//2009年全国天线年会, 2009: 376-379.

    Liu Yizhi, Li Feng. Design and miniaturization of waveguide Rotman lens antenna//2009 National Conference Antenna (NCANT). 2009: 376-379
    [8] Gagnon D R. Procedure for correct refocusing of the Rotman lens according to Snell's law[J]. IEEE Trans Antennas Propag, 1989, 37(3): 390-392. doi: 10.1109/8.18736
    [9] Jamesen R A. High brightness RF linear accelerators[C]//1986 NATO Advanced Study Institute Conference on High-Brightness Accelerators. 1988.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  267
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-05-25
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回