留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z箍缩驱动混合堆第一壁热-力学瞬态响应分析

吴茜 祁建敏 王真

吴茜, 祁建敏, 王真. Z箍缩驱动混合堆第一壁热-力学瞬态响应分析[J]. 强激光与粒子束, 2018, 30: 096005. doi: 10.11884/HPLPB201830.180005
引用本文: 吴茜, 祁建敏, 王真. Z箍缩驱动混合堆第一壁热-力学瞬态响应分析[J]. 强激光与粒子束, 2018, 30: 096005. doi: 10.11884/HPLPB201830.180005
Wu Xi, Qi Jianming, Wang Zhen. Thermal-mechanical response analysis of the first wall in Z-pinch driven fusion-fission hybrid energy reactor[J]. High Power Laser and Particle Beams, 2018, 30: 096005. doi: 10.11884/HPLPB201830.180005
Citation: Wu Xi, Qi Jianming, Wang Zhen. Thermal-mechanical response analysis of the first wall in Z-pinch driven fusion-fission hybrid energy reactor[J]. High Power Laser and Particle Beams, 2018, 30: 096005. doi: 10.11884/HPLPB201830.180005

Z箍缩驱动混合堆第一壁热-力学瞬态响应分析

doi: 10.11884/HPLPB201830.180005
详细信息
    作者简介:

    吴茜(1994-), 女,硕士,从事混合堆第一壁研究;wuxi_caep@foxmail.com

    通讯作者:

    王真(1981-), 男,博士,从事Z箍缩等离子体研究;wangz_es@163.com

  • 中图分类号: TL46

Thermal-mechanical response analysis of the first wall in Z-pinch driven fusion-fission hybrid energy reactor

  • 摘要: 利用ANSYS程序对Z箍缩驱动聚变-裂变混合堆(Z-FFR)第一壁在瞬态热流加载下的热-力学响应进行了模拟计算,分析了第一壁温度、应力随时间和深度的分布。结果表明,周期性脉冲加载不会导致第一壁产生温度累积效应,第一壁温度峰值409 ℃,出现在钨层表面,钨层最大应力140 MPa,锆合金基底最大应力33 MPa。
  • 图  1  热流功率密度Q(t)加载曲线

    Figure  1.  Heat flux loading on the first wall

    图  2  第一壁有限元分析模型

    Figure  2.  Finite element analysis model of first wall

    图  3  第一壁在不同时刻沿深度方向的温度响应

    Figure  3.  The temperature response of first wall at different time along the depth

    图  4  钨层瞬态温度响应

    Figure  4.  Transient temperature response near the surface of the tungsten coating

    图  5  锆合金基底瞬态温度响应

    Figure  5.  Transient temperature response of the Zr alloy

    图  6  钨层不同深度在5次循环加载下的温度响应

    Figure  6.  Cyclic temperature response at the surface of the tungsten coating for 5 cycles

    图  7  钨层瞬态应力/应变响应

    Figure  7.  Transient stress/strain response near the surface of the tungsten coating

    图  8  锆合金基底瞬态应力/应变响应

    Figure  8.  Transient stress/strain response of the Zr alloy

    表  1  钨层和锆合金的热物理参数

    Table  1.   Temperature-dependent properties of W and Zr alloy

    material temperature/℃ density/(g·cm-3) Posison′s ratio thermalconductivity/(W·m-1·K-1) coefficient ofthermal expansion/(10-6 ·K-1) elastic module/GPa
    W 200 19254 0.28 155 3.93 397
    400 19203 0.28 139 3.94 397
    600 19151 0.28 127 3.95 396
    Zr alloy 200 8895 0.34 341 17.5 128
    400 8883 0.36 346 18.1 120
    600 8860 0.38 349 18.6 109
    下载: 导出CSV
  • [1] 李正宏, 黄洪文, 王真, 等. Z箍缩驱动聚变-裂变混合堆总体概念研究进展[J]. 强激光与粒子束, 2014, 26: 100202. doi: 10.11884/HPLPB201426.100202

    Li Zhenghong, Huang Hongwen, Wang Zhen, et al. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor. High Power Laser and Particle Beams, 2014, 26: 100202 doi: 10.11884/HPLPB201426.100202
    [2] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26: 090201. doi: 10.11884/HPLPB201426.090201

    Peng Xianjue, Wang Zhen. Conceptual research of Z-pinch driven fusion-fission hybrid reactor. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
    [3] Wang Zenghui, Zhao Kaixuan, Chen Weiming, et al. Phase transformation research of fusion reactor first wall material tungsten[J]. Applied Thermal Engineering, 2013, 59(1/2): 498-503.
    [4] Zhu D H, Chen J L, Zhou Z J, et al. Thermal-mechanical analysis on W/CuCrZr plasma facing component with functionally graded material interlayer[C]// Symposium of the Tokamak Division of Institute of Plasma Physics, Chinese Academy of Sciences. 2013: 60-70.
    [5] Yang Z, Liu M, Deng C, et al. Thermal stress analysis of W/Cu functionally graded materials by using finite element method[J]. Journal of Physics: Conference Series, 2013, 419: 012051. doi: 10.1088/1742-6596/419/1/012051
    [6] Hunt R M, Abbott R P, Havstad M A, et al. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber[J]. Fusion Engineering & Design, 2013, 88(5): 311-316.
    [7] Blanchard J P, Martin C J. Thermomechanical effects in a laser IFE first wall[J]. Journal of Nuclear Materials, 2005, 347(3): 192-206. doi: 10.1016/j.jnucmat.2005.08.007
    [8] Wang Y, Zhao J. Thermal-mechanical responses of the first wall in CFETR under transient events[J]. Journal of Fusion Energy, 2017, 36: 49-57. doi: 10.1007/s10894-017-0121-6
    [9] Echols J R, Winfrey A L. Ablation offusion materials exposed to high heat flux in an electrothermal plasma discharge as a simulation for hard disruption[J]. Journal of Fusion Energy, 2014, 33(1): 60-67. doi: 10.1007/s10894-013-9639-4
    [10] Qi J M, Wang Z, Chu Y Y, et al. Simulations of fusion chamber dynamics and first wall response in a Z-pinch driven fusion-fission hybrid power reactor (Z-FFR)[J]. Fusion Engineering & Design, 2016, 104(1): 61-70.
    [11] Preston S D, Bretherton I, Forty C. The thermophysical and mechanical properties of the copper heat sink material intended for use in ITER[J]. Fusion Engineering & Design, 2003, 68(3): 441-446.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  210
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-04-04
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回