Transient calculation of natural circulation for pool-type research reactor
-
摘要: 反应堆的自然循环能力是其固有安全性的一项重要特征参数,利用RELAP5/Mod 3.4程序计算了JRR-3M池式研究堆在无应急冷却系统和有应急冷却系统条件下失去场外电源的事故工况,分析了冷却剂流动方向反转过程中的瞬态自然循环能力,并得到了最大自然循环载热能力。计算结果表明:应急冷却系统的投入明显地降低了燃料和冷却剂的温度,提高了反应堆的安全性;当衰变功率降低至590 kW时关闭辅助泵,利用自然循环能力可使反应堆达到安全状态。通过此研究堆的自然循环能力计算,验证了计算模型、计算方法的可行性,可进一步应用于此类型的研究堆。Abstract: The natural circulation capacity is an important parameter that characterizes the safety capability of a nuclear reactor.We calculated the transient characteristics under the conditions with and without emergency cooling system by RELAP5/Mod 3.4, analyzed the transient natural circulation capability of the coolant flow direction reversal process, and acquired the maximum transient transfer capability.The results show: the emergency cooling system reduced fuel and coolant temperatures significantly and improved the safety of the reactor; when the decay power was reduced to 590 kW, the auxiliary pump was turned off and the reactor could be brought into a safe state with natural circulation.
-
表 1 池式研究堆主要设计参数
Table 1. Main design parameters of pool-type research reactor
total power/MW total mass flow rate/(kg·s-1) inlet temperature/℃ outlet temperature/℃ core inlet pressure/MPa 20.00 661.91 35.00 42.19 1.69 表 2 无应急冷却系统事件序列
Table 2. Accident process without emergency cooling system
event start time event start time main pump loss of off-site power supply 100 s control rods drop 101 s secondary side loss of hot trap 100 s finish main pump coasting 220 s open the natural circulation valve 100 s reverse coolant flow 221 s 表 3 有应急冷却事件序列
Table 3. Accident process with emergency cooling system
event start time event start time main pump loss of off-site power supply 100 s close auxiliary pump 3 188 s control rods drop 101 s auxiliary pump finish coast 3 198 s input auxiliary pump 110 s coolant flow reverse 3 199 s open the natural circulation valve 3 183 s -
[1] 杨祖毛, 王飞, 王文康, 等. 闭合回路单相自然循环稳态特性研究[J]. 核动力工程, 1999, 20: 248-253. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG903.006.htmYang Zumao, Wang Fei, Wang Wenkang, et al. Investigation on steady-state performance of single-phase natural circulation for enclosed loop. Nuclear Power Engineering, 1999, 20: 248-253 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG903.006.htm [2] 黄彦平. 压水反应堆自然循环特性研究[D]. 西安: 西安交通大学, 2003: 21-30.Huang Yanping. Study on natural circulation characteristics of a pressurized water reactor. Xi'an: Xi'an Jiaotong University, 2003: 21-30 [3] 田文喜, 秋穗正, 王甲强, 等. 中国先进研究堆稳态自然循环能力分析[J]. 核动力工程, 2007, 28(2): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200702003.htmTian Wenxi, Qiu Suizheng, Wang Jiaqiang, et al. Study on steady natural circulation capacity of CARR. Nuclear Power Engineering, 2007, 28(2): 13-18 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200702003.htm [4] 黄洪文, 刘汉刚, 杨晓斌, 等. 池式研究堆自然循环能力试验及数值模拟[J]. 原子能科学技术, 2012, 46(s1): 206-210. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2012S1045.htmHuang Hongwen, Liu Hangang, Yang Xiaobin, et al. Natural circulation capacity experiment and numerical simulation for pool-type research reactor. Atomic Energy Science and Technology, 2012, 46(s1): 206-210 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2012S1045.htm [5] Kaminaga M, Ikawa H. COOLOD-N: A computer code for the analysis of steady-state thermal-hydraulics in plate type research reactor[J]. JAERI-M, 1990, 90(21): 2201-2213. [6] Nuclear Safety Analysis Division. RELAP5/MOD 3.3 code manual volume I: Code structures, system models, and solution methods[M]. Washington, D.C. : United States Nuclear Regulatory Commission, 2001. [7] EJ/T 745-2001, 轻水堆核燃料衰变热功率的计算[S].EJ/T 745-2001, Calculation of decay heat power in the nuclear fuel of light water reactors [8] Sudo Y, Ando H, Ikawa H, et al. Core thermal hydraulic design with 20% LEU fuel for upgraded research reactor JRR-3[J]. Journal of Nuclear Sci & Tech, 1985, 22(7): 551-564.