留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TM010模介质谐振腔的小型化腔体滤波器

曾柳杏 林福民 肖宇杰

曾柳杏, 林福民, 肖宇杰. 基于TM010模介质谐振腔的小型化腔体滤波器[J]. 强激光与粒子束, 2018, 30: 093003. doi: 10.11884/HPLPB201830.180043
引用本文: 曾柳杏, 林福民, 肖宇杰. 基于TM010模介质谐振腔的小型化腔体滤波器[J]. 强激光与粒子束, 2018, 30: 093003. doi: 10.11884/HPLPB201830.180043
Zeng Liuxing, Lin Fumin, Xiao Yujie. Miniaturized cavity filter based on TM010 mode dielectric resonators[J]. High Power Laser and Particle Beams, 2018, 30: 093003. doi: 10.11884/HPLPB201830.180043
Citation: Zeng Liuxing, Lin Fumin, Xiao Yujie. Miniaturized cavity filter based on TM010 mode dielectric resonators[J]. High Power Laser and Particle Beams, 2018, 30: 093003. doi: 10.11884/HPLPB201830.180043

基于TM010模介质谐振腔的小型化腔体滤波器

doi: 10.11884/HPLPB201830.180043
基金项目: 

广东省科技计划项目 2016A010101024

详细信息
    作者简介:

    曾柳杏(1993-), 男,硕士研究生,从事大功率滤波器的研究;ZLX13610243242@163.com

    通讯作者:

    林福民(1964-), 男,博士,教授,从事大功率微波器件、微波滤波器与射频电路、天线与卫星导航接收终端等的研究;linfumin@gdut.edu.cn

  • 中图分类号: TN713.5;TN815

Miniaturized cavity filter based on TM010 mode dielectric resonators

  • 摘要: 现用于4G基站的介质腔体滤波器都采用TE01δ模介质谐振腔,虽然其品质因数Q值很高,但体积较大。为了小型化介质腔体滤波器,创新性地使用了TM010模介质谐振腔,虽然其Q值比较低,但同样能满足高带外抑制的要求。对TM010模介质谐振腔的端口耦合和两腔之间的磁耦合、电耦合进行分析研究,创新性地使用了介质窗的形式产生电耦合,避免了使用飞杆,易于加工,降低制造成本。最后设计了一个8腔TM010模准椭圆函数介质腔体带通滤波器,在通带(TD-LTE频带,2570~2620 MHz)两端分别设计两个传输零点以提高带外抑制。调试结果表明,TM010模介质腔体滤波器不仅能满足低插损、高带外抑制的要求,而且其体积大幅度缩小。
  • 图  1  TM010模圆柱介质谐振腔几何结构

    Figure  1.  Geometry of TM010 mode cylindrical dielectric resonator

    图  2  圆柱介质谐振腔的模式图

    Figure  2.  Mode charts of cylindrical dielectric resonator

    图  3  TM010模与TE01δ模介质谐振腔尺寸比较

    Figure  3.  Comparison of the size of TM010 mode and TE01δ mode dielectric resonator

    图  4  8腔介质腔体滤波器的拓扑结构图

    Figure  4.  Topology diagram of the 8-pole dielectric cavity filter

    图  5  耦合矩阵的回波损耗和插入损耗

    Figure  5.  S11 and S21 of the coupling matrix

    图  6  环耦合

    Figure  6.  Loop coupling

    图  7  空气窗耦合结构及对应的耦合系数

    Figure  7.  Coupling structure with an air opening and corresponding coupling coefficient curve

    图  8  介质窗耦合结构及对应的耦合系数

    Figure  8.  Coupling structure with a dielectric opening and corresponding coupling coefficient curve

    图  9  介质腔体滤波器的总体结构以及它的回波损耗和插入损耗

    Figure  9.  The overall structure of the filter and its return loss and insertion loss

    图  10  T1T2面上的电场大小分布

    Figure  10.  Magnitude of the electric field on the T1 and T2 surfaces

    表  1  4G基站介质腔体滤波器的主要技术指标要求

    Table  1.   Technical specification of the 4G base station dielectric cavity filter

    technical specification working frequency/MHz return loss/dB insertion loss/dB out-of-band suppression/dB power capacity/W
    expected value 2570~2620(±0.5) ≤ -10 ≥ -1 ≤ -40 @ 2500~2565 MHz ≤ -40 @ 2625~2695 MHz ≤ -60B @ 1880~1920 MHz ≥ 100
    下载: 导出CSV

    表  2  端口的外部品质因数Qe

    Table  2.   Loaded quality factor of the port

    d/mm Qed Qer
    7.00 56.90 57.51
    7.10 55.07 55.80
    7.16 53.76 54.50
    7.20 52.99 53.74
    7.30 52.11 51.83
    下载: 导出CSV

    表  3  谐振腔之间的开窗宽度以及调谐螺钉的长度(单位: mm)

    Table  3.   The width of the openings between resonators and the length of the tuning screws (unit: mm)

    d01 l12 l13 s14 l23 l34 l45 l56 s58 l67 l68 l78 d8L
    9.51 17.74 3.63 15.16 17.57 13.73 15.12 14.43 18.66 16.84 2.53 18.1 9.64
    screw_l1 screw_l2 screw_l3 screw_l4 screw_l5 screw_l6 screw_l7 screw_l8
    7.678 6.347 6.721 7.053 6.938 6.73 6.315 7.559
    下载: 导出CSV

    表  4  4G基站介质腔体滤波器的仿真指标

    Table  4.   Simulation results of the 4G base station dielectric cavity filter

    technical specification working frequency/MHz return loss/dB insertion loss/dB out-of-band suppression/dB power capacity/W
    3D simulation results 2570~2620(±0.5) ≤-10 ≥-1 ≤-50 @ 2500~2565 MHz ≤-48 @ 2625~2695 MHz ≤-60 @ 1880~1920 MHz ≥ 1000
    下载: 导出CSV
  • [1] Harrison W H. A miniature high-Q bandpass filter employing dielectric resonators[J]. IEEE Trans Microwave Theory and Techniques, 1968, 16(4): 210-218. doi: 10.1109/TMTT.1968.1126653
    [2] Cohn S B. Microwave bandpass filters containing high-Q dielectric resonators[J]. IEEE Trans Microwave Theory and Techniques, 1968, 16(4): 218-227. doi: 10.1109/TMTT.1968.1126654
    [3] Pospieszalski M W. Cylindrical dielectric resonators and their applications in TEM-line microwave circuits[C]//European Microwave Conference. 1977: 168-172.
    [4] Chen C J. A four-pole parallel-coupled dual-mode resonator bandpass filter[C]//IEEE MTT-S International Microwave Symposium. 2016: 1-3.
    [5] Doan M T, Che Wenquan, Phu L N. A novel wideband bandpass filter using open stubs multi-mode square ring resonator[C]//International Conference on Advanced Technologies for Communications. 2012: 180-182.
    [6] Zheng Binglong, Wong Saiwai, Feng Shifen, et al. Multi-mode bandpass cavity filters and duplexer with slot mixed-coupling structure[J]. IEEE Access, 2018, 6(1): 16353-16362.
    [7] Cameron R J. General coupling matrix synthesis methods for Chebyshev filtering functions[J]. IEEE Trans Microwave Theory and Techniques, 1999, 47(4): 433-442. doi: 10.1109/22.754877
    [8] Lin Fumin, Ding Yaogen. Approximate formula of the loaded quality factor of doubly reentrant cylindrical cavity coupling with coaxial line[C]//ICMMT 4th International Conference on Microwave and Millimeter Wave Technology. 2004: 491-494.
    [9] 林福民, 王志勇, 黄焕辉. 反射系数相位法计算谐振腔外观品质因数的局限性[J]. 强激光与粒子束, 2005, 17(9): 1399-1404. http://www.hplpb.com.cn/article/id/1196

    Lin Fumin, Wang Zhiyong, Huang Huanhui. Limitation of Qext calculation method based on reflectance phase. High Power Laser and Particle Beams, 2005, 17(9): 1399-1404 http://www.hplpb.com.cn/article/id/1196
    [10] Otto S, Lauer A, Kassner J, et al. Full wave coupled resonator filter optimization using a multi-port admittance-matrix[C]//Asia-Pacific Microwave Conference. 2006: 777-778.
    [11] Yin Xinshe. Accurate extraction of coupling matrix for coupled resonator filters[C]//IEEE/MTT-S International Microwave Symposium Digest. 2012: 1-3.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1789
  • HTML全文浏览量:  495
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-27
  • 修回日期:  2018-05-11
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回