Gravity compensation for bent mirror of synchrotron radiation
-
摘要: 介绍了同步辐射压弯镜重力引起的面型斜率误差及评价标准。根据梁的弯曲理论,提出了力矩加多点力补偿重力的方法,以上海光源XAFS光束线(BL14W)中的压弯镜为例,计算出力矩加两点力、力矩加三点和力矩加四点力补偿的最小斜率均方根误差分别为0.092,0.041,0.022 μrad。补偿结果的对比表明,当镜子两端有力矩补偿时,各补偿力相应减小,力矩加两点力、力矩加三点力和力矩加四点力补偿的面型斜率误差分别为没有力矩补偿时的52%,61%,68%。力矩加多点力补偿重力的方法明显优于多点力补偿重力的方法。Abstract: Slope error and evaluation criteria of bent mirror of synchrotron radiation induced from gravity are introduced.According to the bending theory of beam, a method of gravity compensation by couple combined with multi-point forces is proposed.Taking the bent mirror of the XAFS beam-line (BL14 W) at Shanghai Synchrotron Radiation Facility (SSRF) as an example, the minimum root mean square (RMS) slope error of the bent mirror under the action of two-point, three-point and fourpoint forces combined with couples are calculated, and the result is 0.092, 0.041 and 0.022μrad, respectively.The comparison between the compensation results shows that when a couple is applied to both ends of the mirror, the corresponding compensation forces decreases, and the slope errors of the couple combined with two-point, three-point and four-point forces are 52%, 61%and68% of those without couples.Obviously, the compensation method of couples combined with multi-point forces is better than the multi-point forces compensation method.
-
表 1 不同补偿方法的对比
Table 1. Comparison between different compensation methods
method couple/(N·m) force 1/N force 2/N slope error/μrad 2 forces - 41.530 - 0.179 couples with 2 forces 1.551 32.932 - 0.092 3 forces - 29.880 29.780 0.067 couples with 3 forces 0.903 25.126 25.293 0.041 4 forces - 23.370 23.280 0.032 couples with 4 forces 0.591 20.315 20.439 0.022 -
[1] 邓小国, 周泗忠, 熊仁生, 等. 超环面聚焦镜压弯装置的优化设计[J]. 光子学报, 2006, 35(5): 797-800. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200605036.htmDeng Xiaoguo, Zhou Sizhong, Xiong Rensheng, et al. A optimize design bending mechanism of torodial focusing mirror. Acta Photonica Sinica, 2006, 35(5): 797-800 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200605036.htm [2] 马礼敦. 同步辐射装置——上海光源及其应用[J]. 理化检验: 物理分册, 2009, 45(11): 717-723. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW200911025.htmMa Lidun. Shanghai Synchrotron Radiation Facility and its application. Physical Testing & Chemical Analysis, 2009, 45(11): 717-723 https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW200911025.htm [3] Lü Qingtao, Xue Song, Zhu Wanqian, et al. Pull-rod bent focusing mirror subassembly engineering analysis based on contact nonlinear analysis method[C]//Proc of SPIE. 2009: 73850E. [4] 吕清涛, 薛松, 彭忠琦, 等. 拉杆式压弯聚焦镜组件线性与接触非线性方法的比较[J]. 光学精密工程, 2010, 18(8): 1842-1848. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201008022.htmQing tao, Xue Song, Peng Zhongqi, et al. Comparison on linear and contact nonlinear analysis methods of pull-rod bent focusing mirror assembly. Optics and Precision Engineering, 2010, 18(8): 1842-1848 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201008022.htm [5] 黄志刚, 董晓浩, 高飞, 等. X射线衍射和散射光束线环面聚焦镜的面形精度与像差分析[J]. 光学精密工程, 2004, 12(1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200401006.htmHuang Zhigang, Dong Xiaohao, Gao Fei, et al. Slope error and aberration analysis for XRDX beamline toroidal focusing mirror. Optics and Precision Engineering, 2004, 12(1): 26-30 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200401006.htm [6] 卢启鹏, 高飒飒, 彭忠琦. 同步辐射水平偏转压弯镜面形误差分析与补偿[J]. 光学精密工程, 2011, 19(11): 2644-2650. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201111013.htmLu Qipeng, Gao Sasa, Peng Zhongqi. Slope error analysis and compensation for synchrotron radiation horizontal deflexed mirror. Optics and Precision Engineering, 2011, 19(11): 2644-2650 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201111013.htm [7] Howells M R, Irick S C, Macdowell A A, et al. Theory and practice of elliptically bent X-ray mirrors[J]. Optical Engineering, 2000, 39(10): 2748-2762. doi: 10.1117/1.1289879 [8] 孙福权, 傅远, 祝万钱, 等. 压弯镜系统自重平衡多点调节方法的研究[J]. 核技术, 2011, 34(4): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201104001.htmSun Fuquan, Fu Yuan, Zhu Wanqian, et al. A study on multi-point gravity compensation of mirror bending system. Nuclear Techniques, 2011, 34(4): 246-250 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201104001.htm [9] Howells M R, Lunt D L. Design considerations for adjustable-curvature, high-power, X-ray mirrors based on elastic bending[J]. Optical Engineering, 1993, 32(8): 1981-1989. [10] 周泗忠, 杨晓许, 时惠霞. 压弯聚焦镜自重的平衡[J]. 核技术, 2005, 28(3): 180-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU200503003.htmZhou Sizhong, Yang Xiaoxu, Shi Huixia. Study of gravity compensation of bent focusing mirror. Nuclear Techniques, 2005, 28(3): 180-182 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU200503003.htm [11] 秦超, 薛松, 王楠, 等. 压弯椭圆柱面镜的有限元分析[J]. 核技术, 2018, 41(1): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201801001.htmQin Chao, Xue Song, Wang Nan, et al. The finite element analysis of the bent elliptical cylindrical mirror. Nuclear Techniques, 2018, 41(1): 5-10 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201801001.htm [12] 刘鸿文. 材料力学: 上册[M]. 5版. 北京: 高等教育出版社, 1992: 218-219.Liu Hongwen. Mechanics of materials: book one. 5th ed. Beijing: Higher Education Press, 1992: 218-219 [13] 李庆祥, 王东生, 李玉和. 现代精密仪器设计[M]. 北京: 清华大学出版社, 2004: 64-65.Li Qingxiang, Wang Dongsheng, Li Yuhe. Design of modern precision instruments. Beijing: Tsinghua University Press, 2004: 64-65