留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

节瘤缺陷平坦化提高高反射膜的激光损伤阈值

谢凌云 何涛 张锦龙 焦宏飞 马彬 王占山 程鑫彬

谢凌云, 何涛, 张锦龙, 等. 节瘤缺陷平坦化提高高反射膜的激光损伤阈值[J]. 强激光与粒子束, 2018, 30: 092001. doi: 10.11884/HPLPB201830.180067
引用本文: 谢凌云, 何涛, 张锦龙, 等. 节瘤缺陷平坦化提高高反射膜的激光损伤阈值[J]. 强激光与粒子束, 2018, 30: 092001. doi: 10.11884/HPLPB201830.180067
Xie Lingyun, He Tao, Zhang Jinlong, et al. Improve the LIDT of high-reflection coatings by planarizing nodular defects[J]. High Power Laser and Particle Beams, 2018, 30: 092001. doi: 10.11884/HPLPB201830.180067
Citation: Xie Lingyun, He Tao, Zhang Jinlong, et al. Improve the LIDT of high-reflection coatings by planarizing nodular defects[J]. High Power Laser and Particle Beams, 2018, 30: 092001. doi: 10.11884/HPLPB201830.180067

节瘤缺陷平坦化提高高反射膜的激光损伤阈值

doi: 10.11884/HPLPB201830.180067
基金项目: 

国家自然科学基金项目 61522506

国家自然科学基金项目 51475335

国家自然科学基金项目 61621001

国家自然科学基金项目 61235011

国家自然科学基金项目 91536111

国家重点研发计划项目 2016YFA0200900

上海市科委科技基金项目 17JC1400800

上海市“曙光”计划项目 17SG22

国家重大科学仪器设备开发专项 2014YQ090709

详细信息
    作者简介:

    谢凌云(1992—),女,博士研究生,主要从事强激光薄膜方面的研究; 0107xielingyun@tongji.edu.cn

    通讯作者:

    程鑫彬(1980—),男,教授,博士生导师,主要从事薄膜光学、微纳光学和纳米计量研究; chengxb@tongji.edu.cn

  • 中图分类号: O484

Improve the LIDT of high-reflection coatings by planarizing nodular defects

  • 摘要: 探究了节瘤缺陷平坦化技术中平坦化层(刻蚀层)厚度和种子源尺寸之间的刻蚀规律,同时解释了平坦化技术提高节瘤缺陷的损伤阈值的机制。在双离子束溅射系统中,使用SiO2微球模拟真实的种子源置于基板上,镀制1064 nm HfO2/SiO2高反膜,制备人工节瘤缺陷。对类似于实际种子源的SiO2微球一系列不同刻蚀程度的实验得出了节瘤缺陷平坦化技术的刻蚀规律:只要平坦化层(刻蚀层)的厚度稍大于节瘤缺陷的种子源粒径,就可以将种子源完全平坦化。使用时域有限差分法(FDTD)模拟不同平坦化程度的节瘤缺陷内电场增强的结果与节瘤缺陷的损伤形貌进行对比实验,将损伤形貌和损伤阈值与电场强度分布之间建立联系,表明平坦化技术可以改变节瘤缺陷原有的几何结构,有效抑制节瘤缺陷的电场增强效应。最后,通过对未经平坦化和经过平坦化处理后的节瘤缺陷进行损伤阈值测试,对比结果直接验证了节瘤缺陷平坦化技术可以实现对节瘤缺陷的调控,大幅度提高了节瘤缺陷的损伤阈值。
  • 图  1  双离子束溅射系统示意图

    Figure  1.  Diagram of dual ion beam sputtering deposition system

    图  2  薄膜材料的沉积速率和刻蚀速率

    Figure  2.  Deposition rate and etch rate of the coating materials

    图  3  三组不同平坦化程度1064 nm高反膜的透射光谱图

    Figure  3.  Transmission spectra of 1064 nm high-reflection coatings with different thickness planarization layers

    图  4  光栅扫描法激光测试点示意图

    Figure  4.  Laser testing points in raster scan

    图  5  2 μm SiO2微球形成的人工节瘤缺陷的剖面图

    Figure  5.  Cross-sectional SEM image of artificial nodular defects with 2 μm SiO2 microspheres

    图  6  经过1.25 μm SiO2层平坦化后节瘤缺陷的剖面图

    Figure  6.  Cross-sectional SEM images of nodular defects with 1.25 μm-thick SiO2 Planarization layer

    图  7  经过2.5 μm SiO2层平坦化后节瘤缺陷的剖面图

    Figure  7.  Cross-sectional SEM images of nodular defects with 2.5 μm-thick SiO2 planarization layer

    图  8  2 μm种子源形成的不同平坦化程度的节瘤缺陷的剖面图

    Figure  8.  Cross-sectional SEM images of nodular defects that grow from 2 μm-diameter seeds with different planarization layer thickness

    图  9  2 μm种子源未经平坦化和部分平坦化后形成的节瘤缺陷的剖面图、节瘤缺陷内的电场强度分布模拟图以及激光辐照后的损伤形貌图

    Figure  9.  Cross-sectional SEM images, simulated electric field intensity(EFI) distributions and damage morphologies of nodular defects that grow from 2 μm-diameter seeds

    图  10  三组不同平坦化程度1064 nm高反膜的损伤阈值

    Figure  10.  Statistical ejection fluences of 1064 nm high reflection with different thickness planarization layers

  • [1] Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664. doi: 10.1364/AO.12.000661
    [2] Kozlowski M R, Chow R. Role of defects in laser damage of multilayer coatings[C]//Proc of SPIE. 1994, 2114: 640-649.
    [3] Cheng Xinbin, Ding Tao, He Wenyan, et al. Using engineered nodules to study laser-induced damage in optical thin films with nanosecond pulses[C]//Proc of SPIE. 2011: 819002.
    [4] 谢凌云, 程鑫彬, 张锦龙, 等. 节瘤缺陷激光损伤的研究进展[J]. 强激光与粒子束, 2016, 28: 090201. doi: 10.11884/HPLPB201628.160058

    Xie Lingyun, Cheng Xinbin, Zhang Jinlong, et al. Research progress of laser-induced damage of nodular defects. High Power Laser and Particle Beams, 2016, 28: 090201 doi: 10.11884/HPLPB201628.160058
    [5] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.
    [6] Stolz C J, Feit M D, Pistor T V. Laser intensification by spherical inclusions embedded within multilayer coatings[J]. Applied Optics, 2006, 45(7): 1594-1601. doi: 10.1364/AO.45.001594
    [7] Cheng Xinbin, Zhang Jinlong, Ding Tao, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2013, 2(6): e80.
    [8] Cheng Xinbin, Tuniyazi A, Wei Zeyong, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 2015, 23(7): 8609-8619. doi: 10.1364/OE.23.008609
    [9] Bennett J M. How to clean surfaces[C]//Proc of SPIE. 2004, 5273: 195-206.
    [10] Rigatti A L. Cleaning process versus laser-damage threshold of coated optical components[C]//Proc of SPIE. 2005, 5647: 136-140.
    [11] Stolz C J, Sheehan L M, Von Gunten M K, et al. Advantages of evaporation of hafnium in a reactive environment for manufacture of high-damage-threshold multilayer coatings by electron-beam deposition[C]//Proc of SPIE. 1999, 3738: 318-324.
    [12] Papandrew A B, Stolz C J, Wu Z, et al. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy[C]//Proc of SPIE. 2001, 4347: 53-61.
    [13] Wolfe J E, Qiu S R, Stolz C J. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining[J]. Applied Optics, 2011, 50: C457-C462. doi: 10.1364/AO.50.00C457
    [14] Stolz C J, Wolfe J E, Adams J J, et al. High laser-resistant multilayer mirrors by nodular defect planarization[J]. Applied Optics, 2014, 53(4): A291-A296. doi: 10.1364/AO.53.00A291
    [15] Stolz C J, Wolfe J E, Mirkarimi P B, et al. Defect insensitive 100 J/cm2 multilayer mirror coating process[C]//Proc of SPIE. 2013: 888502.
  • 加载中
图(10)
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  240
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-14
  • 修回日期:  2018-06-13
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回