Fabrication and performance test of double-layered parallel CdZnTe detector
-
摘要: 实验采用并联方法制备了叠层(双层)碲锌镉探测器,并利用241Am@59.54 keV和57Co@122 keV γ射线源测试了其γ能谱特性。相比单层探测器,对于较高能量的57Co@122 keV γ射线,叠层碲锌镉探测器表现出较高的探测效率和光峰值效率,较好地改善了康普顿连续统一体。叠层CZT探测器较之单层探测器,能谱分辨率发生轻微恶化。实验初步表明,通过并联叠加方法制备叠层碲锌镉探测器是可行的,并可推断制备更大厚度的叠层探测器将有利于中高能γ射线能谱测量。Abstract: A stacked (double-layered) CdZnTe detector was fabricated experimentally by parallel method and its gamma spectrum characteristics was tested using 241Am@59.54 keV and 57Co@122 keV gamma ray sources. Compared with a single-layered detector, for the higher energy gamma rays of 57Co@122 keV, the stacked CdZnTe detector exhibited higher detection efficiency and light peak efficiency, and improved the Compton continuum. The energy spectrum resolution of the stacked CdZnTe detector was slightly worse than that of the single-layered detector. The preliminary experimental results show that it is feasible to prepare a stacked CdZnTe detector by parallel method, and it can be inferred that preparation of stacked CdZnTe detectors of larger thickness will be beneficial for mid-high-energy gamma ray spectrometry.
-
Key words:
- double layers /
- parallel /
- preparation of CdZnTe detectors /
- performance test
-
表 1 单、叠层探测器γ能谱分辨率及全能峰峰区计数率对比
Table 1. Comparison of γ spectrum resolution and counting rate at full energy peak area for single- and double- layered detectors
number of CZT layers γ spectrum resolution/%(241Am) counting rate at full energy peak area/CPS(241Am) γ spectrum resolution/%(57Co) counting rate at full energy peak area/CPS(57Co) 2 5.53 991 4.49 1308 1 5.43 987 4.18 909 -
[1] 艾宪芸, 魏义祥. 室温半导体CdZnTe(CdTe)探测器性能综述[J]. 核电子学与探测技术, 2004, 24(3): 325-329. doi: 10.3969/j.issn.0258-0934.2004.03.030Ai Xianyun, Wei Yixiang. Basic characterization of CdZnTe(CdTe)detectors. Nuclear Electronics & Detection Technology, 2004, 24(3): 325-329 doi: 10.3969/j.issn.0258-0934.2004.03.030 [2] 朱世富, 赵北君, 王瑞林, 等. 室温半导体核辐射探测器新材料及其器件研究[J]. 人工晶体学报, 2004, 33(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT200401002.htmZhu Shifu, Zhao Beijun, Wang Ruilin, et al. Studies of new materials and devices for room-temperature nuclear radiation detectors. Journal of Synthetic Crystals, 2004, 33(1): 6-12 https://www.cnki.com.cn/Article/CJFDTOTAL-RGJT200401002.htm [3] 张岚, 李元景, 朱维彬, 等. 碲锌镉探测器对低能X射线的探测[J]. 核电子学与探测技术, 2009, 29(3): 517-520. doi: 10.3969/j.issn.0258-0934.2009.03.007Zhang Lan, Li Yuanjing, Zhu Weibin, et al. Detection of CdZnTe detectors to low energy photons. Nuclear Electronics & Detection Technology, 2009, 29(3): 517-520 doi: 10.3969/j.issn.0258-0934.2009.03.007 [4] Xu Huichao, Cheng Cheng, Zhao Cuilan. Characteristics of a prototype CdZnTe detector[J]. Nuclear Science and Techniques, 2007, 18(6): 358- 361. doi: 10.1016/S1001-8042(08)60008-1 [5] 丁洪林, 罗丛, 张万昌. CdTe, CdZnTe核辐射探测器的制备性能和应用[C]//全国第十二届核电子学与核探测技术学术年会论文集. 2004: 88-91.Ding Honglin, Luo Cong, Zhang Wanchang. Characteristics and applications of CdTe/CdZnTe nuclear detectors//Proceedings of the 12th National Conference on Nuclear Electronics & Detection Technology. 2004: 88-91 [6] 黄勇, 杨磊, 杨汝基, 等. 碲化镉(CdTe)探测器的原理及医学应用[J]. 上海生物医学工程, 2005, 26(4): 221-225. doi: 10.3969/j.issn.1674-1242.2005.04.009Huang Yong, Yang Lei, Yang Ruji, et al. The principle of cadmium telluride(CdTe)detector and medical application. Shanghai Journal of Biomedical Engineering, 2005, 26(4): 221-225 doi: 10.3969/j.issn.1674-1242.2005.04.009 [7] Liptac J, Parker R, Tang V, et al. Hard X-ray diagnostic for lower hybrid experiments on Alcator C-Mod[J]. Rev Sci Instrum, 2006, 77: 103504. doi: 10.1063/1.2214695 [8] Min Jiahua, Sang Wenbin, Liu Hongtao, et al. Improving the properties of CdZnTe crystals by annealing processes[J]. Rare Metal Materials and Engineering, 2007, 36(3): 471-473. [9] Sellin P J, Davies A W, Gkoumas S, et al. Ion beam induced charge imaging of charge transport in CdTe and CdZnTe[J]. Nucl Instrum Meth B, 2008, 266(8): 1300-1306. doi: 10.1016/j.nimb.2007.11.074 [10] Xu Yadong, Jie Wanqi, Sellin P J, et al. Study on temperature dependent resistivity of indium-doped cadmium zinc telluride[J]. J Phys D: Appl Phys, 2009, 42: 03505. [11] Meng L J, Tan J W, Spartiotis K, et al. Preliminary evaluation of a novel energy resolved photon counting gamma ray detector[J]. Nucl Instrum Methods Phys Res A, 2009, 604(3): 548-554. doi: 10.1016/j.nima.2009.02.043 [12] 徐亚东, 王昌盛, 谷亚旭, 等. 载流子输运性能对CdZnTe晶体脉冲X射线响应特性的影响[J]. 功能材料, 2014, 45(24): 24078-24081. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201424016.htmXu Yadong, Wang Changsheng, Gu Yaxu, et al. Effects of charge carrier transport properties on pulse X ray response characteristics of CdZnTe crystals. Functional Material, 2014, 45(24): 24078-24081 https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201424016.htm [13] 沈敏, 肖沙里, 张流强, 等. 不同厚度像素CdZnTe探测器的性能测试和评估[J]. 强激光与粒子束, 2014, 26: 034001. doi: 10.3788/HPLPB201426.034001Shen Min, Xiao Shali, Zhang Liuqiang, et al. Experiment and simulation of performance characteristics for pixellated CdZnTe detectors with various thickness. High Power Laser and Particle Beams, 2014, 26: 034001 doi: 10.3788/HPLPB201426.034001 [14] 席发元, 宋凤军. 叠层碲锌镉探测器制备及γ能谱特性测试[J]. 强激光与粒子束, 2018, 30: 036005. doi: 10.11884/HPLPB201830.170315Xi Fayuan, Song Fengjun. Fabrication and γ spectrum characteristic test of a laminated CdZnTe detector. High Power Laser and Particle Beams, 2018, 30: 036005 doi: 10.11884/HPLPB201830.170315 [15] 李杨, 罗文芸, 贾晓斌, 等. 平面型CdZnTe探测器电荷收集效率对能谱测量的影响[J]. 上海大学学报, 2016, 22(2): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201602015.htmLi Yang, Luo Wenyun, Jia Xiaobin, et al. Influence of charge collection efficiency on energy spectrum for planar CdZnTe detector. Journal of Shanghai University (Natural Science), 2016, 22(2): 231-237 https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201602015.htm