留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪崩三极管串联的纳秒脉冲发生器

饶俊峰 章薇 李孜 姜松

饶俊峰, 章薇, 李孜, 等. 雪崩三极管串联的纳秒脉冲发生器[J]. 强激光与粒子束, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103
引用本文: 饶俊峰, 章薇, 李孜, 等. 雪崩三极管串联的纳秒脉冲发生器[J]. 强激光与粒子束, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103
Rao Junfeng, Zhang Wei, Li Zi, et al. Nanosecond pulse generator with avalanche transistors in series[J]. High Power Laser and Particle Beams, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103
Citation: Rao Junfeng, Zhang Wei, Li Zi, et al. Nanosecond pulse generator with avalanche transistors in series[J]. High Power Laser and Particle Beams, 2018, 30: 095002. doi: 10.11884/HPLPB201830.180103

雪崩三极管串联的纳秒脉冲发生器

doi: 10.11884/HPLPB201830.180103
基金项目: 

国家自然科学基金青年基金项目 51707122

详细信息
    作者简介:

    饶俊峰(1985-),男,博士,主要从事全固态纳秒高压脉冲发生器、大功率直流充电技术和低温等离子体应用等方面的研究;jfrao@usst.edu.cn

    通讯作者:

    章薇(1992-),女,硕士研究生,主要研究方向为脉冲功率技术;491341070@qq.com

  • 中图分类号: TN782

Nanosecond pulse generator with avalanche transistors in series

  • 摘要: 雪崩三极管因其快速性、高重复频率等特点被广泛应用于纳秒脉冲发生器。为了提高输出电压,常采用多管串联Marx电路。采用二极管代替传统多管串联Marx电路中的部分限流电阻以减少能量损耗,加快充电速度,提高重复频率,并分析了主电容和限流电阻对输出脉冲幅值和频率的影响。通过雪崩三极管的单管击穿实验,单个三极管的导通内阻最小约为2.5 Ω,多管串联Marx电路中的等效内阻使负载侧的输出电压降低,故采用多路Marx并联电路以提高输出电压幅值。通过改变Marx并联模块数量,研究了电路等效内阻对输出脉冲的影响;通过改变负载电阻值,验证了Marx并联电路在小负载下升压效果更佳。实验结果表明,通过相同的4路Marx并联电路进行放电实验,在50 Ω负载侧输出上升沿为3.4 ns、幅值为2.5 kV、可在15 kHz下稳定工作的脉冲。
  • 图  1  雪崩三极管的4管串联5级Marx传统电路

    Figure  1.  Schematic of the avalanche transistor-based 4-in-series 5-stage traditional Marx circuit

    图  2  雪崩三极管的4管串联5级Marx改进电路

    Figure  2.  Schematic of the avalanche transistor-based 4-in-series 5-stage improved Marx circuit

    图  3  不同电容量下电压幅值和工作频率的关系

    Figure  3.  Relationship between voltage amplitude and frequency under different capacitances

    图  4  不同限流电阻下电压幅值和工作频率的关系

    Figure  4.  Relationship between voltage amplitude and frequency with different current-limiting resistors

    图  5  典型单管电路输出电压UO及三极管动态阻抗波形

    Figure  5.  Output waveform of the typical single-transistor circuit and the dynamic resistance of the transistor

    图  6  雪崩三极管导通时Marx电路的等效电路图

    Figure  6.  Equivalent circuit of a Marx circuit based on avalanche transistor

    图  7  雪崩三极管导通时4路Marx电路的等效电路图

    Figure  7.  Equivalent circuit of four Marx circuits in parallel based on avalanche transistors

    图  8  多路4管串联5级Marx电路的原理图

    Figure  8.  Schematic of multi circuits in parallel using 4-in-series 5-stage Marx circuits

    图  9  50 Ω负载—不同模块数量下的脉冲输出波形

    Figure  9.  Output waveforms over a 50 Ω resistive load with different number of modules

    图  10  4路Marx-不同负载电阻下的脉冲输出波形

    Figure  10.  Output waveform of four Marx circuits in parallel under different load resistances

    图  11  4路Marx 50 Ω负载下重复频率15 kHz的输出波形

    Figure  11.  Output waveforms of four Marx circuits in parallel over a 50 Ω resistive load under the frequency of 15 kHz

    表  1  雪崩三极管(C1815)的参数

    Table  1.   Parameters of the avalanche transistor C1815

    VCBO/V VCEO/V VEBO/V ICM/A
    60 50 5 0.15
    下载: 导出CSV

    表  2  50 Ω负载—不同模块数量下输出脉冲的性能参数

    Table  2.   Parameters of output pulse under different number of modules over a 50 Ω resistive load

    N tf/ns tr/ns Vm/V Pmax/kW rm Δr/%
    1 2.2 90.8 1476 43.6 65.2 30.4
    2 2.3 146.5 1936 75.0 37.8 51.2
    3 2.9 201.3 2228 99.3 26.3 57.8
    4 3.4 260.7 2512 126.2 17.7 41.6
    下载: 导出CSV

    表  3  4路Marx—不同负载电阻下输出脉冲的性能参数

    Table  3.   Parameters of output pulse of four Marx circuits in parallel under different load resistances

    RL tf/ns tr/ns Vm/V Pmax/kW
    25 3.2 150.9 1904 145.0
    50 3.4 260.7 2512 126.2
    75 3.5 396.0 2792 103.9
    100 3.5 516.7 2944 86.7
    下载: 导出CSV

    表  4  50 Ω负载—不同模块数量下脉冲发生器效率对比

    Table  4.   Efficiency of pulse generators under different number of modules over a 50 Ω resistive load

    N Iam/A PO/mW EC/mJ ηE/%
    1 29.5 4.3 2.3 37.4
    2 19.4 8.7 2.3 37.8
    3 14.9 13.6 2.3 39.4
    4 12.6 17.5 2.3 38.0
    下载: 导出CSV
  • [1] 杨茜, 易红宏, 唐晓龙, 等. 低温等离子体处理工业废气中甲苯的研究进展[J]. 安全与环境工程, 2017, 24(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htm

    Yang Qian, Yi Honghong, Tang Xiaolong, et al. Research progress in treatment of toluene in industrial waste gas by non-thermal plasma technology. Safety and Environmental Engineering, 2017, 24(1): 77-83 https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htm
    [2] 张贵剑, 李凯, 林强, 等. 低温等离子体技术脱除大气污染物的研究进展[J]. 材料导报, 2015, 29(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htm

    Zhang Guijian, Li Kai, Lin Qiang, et al. Research progress of removing atmospheric pollutants by non-thermal plasma technology. Materials Review, 2015, 29(1): 137-142 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htm
    [3] 李兆杰, 杨丽君, 刘小菁, 等. 辉光放电低温等离子体技术对微生物的杀菌动力学及杀菌机制[J]. 食品科学, 2015, 36(11): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htm

    Li Zhaojie, Yang Lijun, Liu Xiaojing, et al. Bactericidal kinetics and mechanisms of low temperature glow discharge plasma. Food Science, 2015, 36(11): 167-171 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htm
    [4] 乔维维, 黄明明, 王佳媚, 等. 低温等离子体对生鲜牛肉杀菌效果及色泽的影响[J]. 食品科学, 2017, 38(23): 237-242. doi: 10.7506/spkx1002-6630-201723038

    Qiao Weiwei, Huang Mingming, Wang Jiamei, et al. Effect of cold plasma on sterilization and color of fresh beef. Food Science, 2017, 38(23): 237-242 doi: 10.7506/spkx1002-6630-201723038
    [5] 胥萌, 晋伟, 周济, 等. 低温等离子体在矿物加工领域应用现状[J]. 煤炭科学技术, 2017, 45(9): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htm

    Xu Meng, Jin Wei, Zhou Ji, et al. Application status of low temperature plasma in mineral processing field. Coal Science and Technology, 2017, 45(9): 201-208 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htm
    [6] 姜竹茂, 张颂, 廖新浴, 等. 低温等离子体在生物聚合物降解改性中的研究进展[J]. 食品科学, 2017, 38(23): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htm

    Jiang Zhumao, Zhang Song, Liao Xinyu, et al. Progress in the application of non-thermal plasma in degradation and modification of biopolymers. Food Science, 2017, 38(23): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htm
    [7] Li Jiangtao, Zhong Xu, Li Jianhao, et al. Theoretical analysis and experimental study on an avalanche transistor-based Marx generator[J]. IEEE Trans Plasma Science, 2015, 43(10): 3399-3405.
    [8] Tan J W, Zhong Z M, Liu Y, et al. Research on high-repetition high-voltage nanosecond rectangular pulse generator based on avalanche transistor[C]//The Seventh Asia-Pacific Conference on Environmental Electromagnetics. 2015: 73-76.
    [9] 徐乐, 江伟华. 基于雪崩三极管的快前沿脉冲功率源研究[J]. 强激光与粒子束, 2016, 28: 015001. doi: 10.11884/HPLPB201628.015001

    Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors. High Power Laser and Particle Beams, 2016, 28: 015001 doi: 10.11884/HPLPB201628.015001
    [10] 赵政, 钟旭, 李征, 等. 基于雪崩三极管的高重复频率高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8): 33-47, 54.

    Zhao Zheng, Zhong Xu, Li Zheng, et al. Review on the methods of generating high-repetitive-frequency high-voltage nanosecond pulses based on avalanche transistors. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47, 54
    [11] Ding W Deidong, Wang Yanan, Fan Chuan, et al. A subnanosecond jitter trigger generator utilizing trigatron switch and avalanche transistor circuit[J]. IEEE Trans Plasma Science, 2015, 43(4): 1054-1062.
    [12] 饶俊峰, 张伟, 李孜, 等. 双极结型晶体管的集电结反向雪崩击穿特性[J]. 强激光与粒子束, 2016, 28: 125002. doi: 10.11884/HPLPB201628.160158

    Rao Junfeng, Zhang Wei, Li Zi, et al. Reverse avalanche breakdown characteristics of collector junctions in bipolar junction transistors. High Power Laser and Particle Beams, 2016, 28: 125002 doi: 10.11884/HPLPB201628.160158
    [13] 周星, 赵敏, 程二威, 等. 一种小型化双指数脉冲源的设计[J]. 强激光与粒子束, 2014, 26: 063202. doi: 10.11884/HPLPB201426.063202

    Zhou Xing, Zhao Min, Cheng Erwei, et al. Design of miniature double-exponential pulse generator. High Power Laser and Particle Beams, 2014, 26: 063202 doi: 10.11884/HPLPB201426.063202
    [14] Bishop A I, Barker P F. Subnanosecond Pockels cell switching using avalanche transistors[J]. Review of Scientific Instruments, 2006, 77: 044701.
    [15] Li Zi, Li Pan, Rao Junfeng, et al. Theoretical analysis and improvement on pulse generator using BJTs as switches[J]. IEEE Trans Plasma Science, 2016, 44(10): 2053-2059.
    [16] 饶俊峰, 皮特尔, 李孜, 等. 带截尾开关的高频纳秒脉冲功率源设计[J]. 高电压技术, 2017, 43(6): 1800-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htm

    Rao Junfeng, Pi Teer, Li Zi, et al. Design on high-frequency nanosecond pulse power source with truncated switches. High voltage Engineering, 2017, 43(6): 1800-1807 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htm
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2232
  • HTML全文浏览量:  435
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-03
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回