Nanosecond pulse generator with avalanche transistors in series
-
摘要: 雪崩三极管因其快速性、高重复频率等特点被广泛应用于纳秒脉冲发生器。为了提高输出电压,常采用多管串联Marx电路。采用二极管代替传统多管串联Marx电路中的部分限流电阻以减少能量损耗,加快充电速度,提高重复频率,并分析了主电容和限流电阻对输出脉冲幅值和频率的影响。通过雪崩三极管的单管击穿实验,单个三极管的导通内阻最小约为2.5 Ω,多管串联Marx电路中的等效内阻使负载侧的输出电压降低,故采用多路Marx并联电路以提高输出电压幅值。通过改变Marx并联模块数量,研究了电路等效内阻对输出脉冲的影响;通过改变负载电阻值,验证了Marx并联电路在小负载下升压效果更佳。实验结果表明,通过相同的4路Marx并联电路进行放电实验,在50 Ω负载侧输出上升沿为3.4 ns、幅值为2.5 kV、可在15 kHz下稳定工作的脉冲。Abstract: Avalanche transistors have been widely used in nanosecond pulse generators because of their short rise time, high-frequency and other characteristics. In order to increase the output voltage amplitude, Marx circuits based on cascaded switches are often used. In this paper, diodes were used to replace some current-limiting resistors in traditional Marx circuits based on cascaded switches to reduce the energy loss, to speed up the charging speed, and to increase the repetitive frequency. The influences of capacitance and the current limiting resistor on the output voltage amplitude and frequency are analyzed. By testing the breakdown of a single BJT, the minimum on-resistance of the single BJT was calculated to be about 2.5 Ω, and the equivalent internal resistance of the Marx circuit based on cascaded switches reduced the output voltage amplitude over the load, hence multiple Marx circuits in parallel were used to increase the output voltage amplitude. By changing the number of Marx parallel modules, the influence of the equivalent internal resistance of the circuit on the output pulse was studied. By changing the load resistance, it is verified that the Marx circuit in parallel had a better boosting effect over low-resistance loads. The experiments show that, nanosecond pluses with rise time of 3.4 ns, amplitude of 2.5 kV and repetitive frequency of 15 kHz were obtained over a 50 Ω load with four Marx circuits in parallel.
-
Key words:
- avalanche transistor /
- nanosecond pulse /
- Marx
-
表 1 雪崩三极管(C1815)的参数
Table 1. Parameters of the avalanche transistor C1815
VCBO/V VCEO/V VEBO/V ICM/A 60 50 5 0.15 表 2 50 Ω负载—不同模块数量下输出脉冲的性能参数
Table 2. Parameters of output pulse under different number of modules over a 50 Ω resistive load
N tf/ns tr/ns Vm/V Pmax/kW rm/Ω Δr/% 1 2.2 90.8 1476 43.6 65.2 30.4 2 2.3 146.5 1936 75.0 37.8 51.2 3 2.9 201.3 2228 99.3 26.3 57.8 4 3.4 260.7 2512 126.2 17.7 41.6 表 3 4路Marx—不同负载电阻下输出脉冲的性能参数
Table 3. Parameters of output pulse of four Marx circuits in parallel under different load resistances
RL/Ω tf/ns tr/ns Vm/V Pmax/kW 25 3.2 150.9 1904 145.0 50 3.4 260.7 2512 126.2 75 3.5 396.0 2792 103.9 100 3.5 516.7 2944 86.7 表 4 50 Ω负载—不同模块数量下脉冲发生器效率对比
Table 4. Efficiency of pulse generators under different number of modules over a 50 Ω resistive load
N Iam/A PO/mW EC/mJ ηE/% 1 29.5 4.3 2.3 37.4 2 19.4 8.7 2.3 37.8 3 14.9 13.6 2.3 39.4 4 12.6 17.5 2.3 38.0 -
[1] 杨茜, 易红宏, 唐晓龙, 等. 低温等离子体处理工业废气中甲苯的研究进展[J]. 安全与环境工程, 2017, 24(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htmYang Qian, Yi Honghong, Tang Xiaolong, et al. Research progress in treatment of toluene in industrial waste gas by non-thermal plasma technology. Safety and Environmental Engineering, 2017, 24(1): 77-83 https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701013.htm [2] 张贵剑, 李凯, 林强, 等. 低温等离子体技术脱除大气污染物的研究进展[J]. 材料导报, 2015, 29(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htmZhang Guijian, Li Kai, Lin Qiang, et al. Research progress of removing atmospheric pollutants by non-thermal plasma technology. Materials Review, 2015, 29(1): 137-142 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201501026.htm [3] 李兆杰, 杨丽君, 刘小菁, 等. 辉光放电低温等离子体技术对微生物的杀菌动力学及杀菌机制[J]. 食品科学, 2015, 36(11): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htmLi Zhaojie, Yang Lijun, Liu Xiaojing, et al. Bactericidal kinetics and mechanisms of low temperature glow discharge plasma. Food Science, 2015, 36(11): 167-171 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201511036.htm [4] 乔维维, 黄明明, 王佳媚, 等. 低温等离子体对生鲜牛肉杀菌效果及色泽的影响[J]. 食品科学, 2017, 38(23): 237-242. doi: 10.7506/spkx1002-6630-201723038Qiao Weiwei, Huang Mingming, Wang Jiamei, et al. Effect of cold plasma on sterilization and color of fresh beef. Food Science, 2017, 38(23): 237-242 doi: 10.7506/spkx1002-6630-201723038 [5] 胥萌, 晋伟, 周济, 等. 低温等离子体在矿物加工领域应用现状[J]. 煤炭科学技术, 2017, 45(9): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htmXu Meng, Jin Wei, Zhou Ji, et al. Application status of low temperature plasma in mineral processing field. Coal Science and Technology, 2017, 45(9): 201-208 https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709033.htm [6] 姜竹茂, 张颂, 廖新浴, 等. 低温等离子体在生物聚合物降解改性中的研究进展[J]. 食品科学, 2017, 38(23): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htmJiang Zhumao, Zhang Song, Liao Xinyu, et al. Progress in the application of non-thermal plasma in degradation and modification of biopolymers. Food Science, 2017, 38(23): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201723045.htm [7] Li Jiangtao, Zhong Xu, Li Jianhao, et al. Theoretical analysis and experimental study on an avalanche transistor-based Marx generator[J]. IEEE Trans Plasma Science, 2015, 43(10): 3399-3405. [8] Tan J W, Zhong Z M, Liu Y, et al. Research on high-repetition high-voltage nanosecond rectangular pulse generator based on avalanche transistor[C]//The Seventh Asia-Pacific Conference on Environmental Electromagnetics. 2015: 73-76. [9] 徐乐, 江伟华. 基于雪崩三极管的快前沿脉冲功率源研究[J]. 强激光与粒子束, 2016, 28: 015001. doi: 10.11884/HPLPB201628.015001Xu Le, Jiang Weihua. Study of fast rising pulsed power generator based on avalanche transistors. High Power Laser and Particle Beams, 2016, 28: 015001 doi: 10.11884/HPLPB201628.015001 [10] 赵政, 钟旭, 李征, 等. 基于雪崩三极管的高重复频率高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8): 33-47, 54.Zhao Zheng, Zhong Xu, Li Zheng, et al. Review on the methods of generating high-repetitive-frequency high-voltage nanosecond pulses based on avalanche transistors. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47, 54 [11] Ding W Deidong, Wang Yanan, Fan Chuan, et al. A subnanosecond jitter trigger generator utilizing trigatron switch and avalanche transistor circuit[J]. IEEE Trans Plasma Science, 2015, 43(4): 1054-1062. [12] 饶俊峰, 张伟, 李孜, 等. 双极结型晶体管的集电结反向雪崩击穿特性[J]. 强激光与粒子束, 2016, 28: 125002. doi: 10.11884/HPLPB201628.160158Rao Junfeng, Zhang Wei, Li Zi, et al. Reverse avalanche breakdown characteristics of collector junctions in bipolar junction transistors. High Power Laser and Particle Beams, 2016, 28: 125002 doi: 10.11884/HPLPB201628.160158 [13] 周星, 赵敏, 程二威, 等. 一种小型化双指数脉冲源的设计[J]. 强激光与粒子束, 2014, 26: 063202. doi: 10.11884/HPLPB201426.063202Zhou Xing, Zhao Min, Cheng Erwei, et al. Design of miniature double-exponential pulse generator. High Power Laser and Particle Beams, 2014, 26: 063202 doi: 10.11884/HPLPB201426.063202 [14] Bishop A I, Barker P F. Subnanosecond Pockels cell switching using avalanche transistors[J]. Review of Scientific Instruments, 2006, 77: 044701. [15] Li Zi, Li Pan, Rao Junfeng, et al. Theoretical analysis and improvement on pulse generator using BJTs as switches[J]. IEEE Trans Plasma Science, 2016, 44(10): 2053-2059. [16] 饶俊峰, 皮特尔, 李孜, 等. 带截尾开关的高频纳秒脉冲功率源设计[J]. 高电压技术, 2017, 43(6): 1800-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htmRao Junfeng, Pi Teer, Li Zi, et al. Design on high-frequency nanosecond pulse power source with truncated switches. High voltage Engineering, 2017, 43(6): 1800-1807 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201706008.htm