留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高压电源谐振升压倍压电路

杨晓光 史冉冉 高思佳 赵硕

杨晓光, 史冉冉, 高思佳, 等. 一种高压电源谐振升压倍压电路[J]. 强激光与粒子束, 2018, 30: 095007. doi: 10.11884/HPLPB201830.180105
引用本文: 杨晓光, 史冉冉, 高思佳, 等. 一种高压电源谐振升压倍压电路[J]. 强激光与粒子束, 2018, 30: 095007. doi: 10.11884/HPLPB201830.180105
Yang Xiaoguang, Shi Ranran, Gao Sijia, et al. A resonance boosting and voltage double circuit for high voltage power supply[J]. High Power Laser and Particle Beams, 2018, 30: 095007. doi: 10.11884/HPLPB201830.180105
Citation: Yang Xiaoguang, Shi Ranran, Gao Sijia, et al. A resonance boosting and voltage double circuit for high voltage power supply[J]. High Power Laser and Particle Beams, 2018, 30: 095007. doi: 10.11884/HPLPB201830.180105

一种高压电源谐振升压倍压电路

doi: 10.11884/HPLPB201830.180105
详细信息
    作者简介:

    杨晓光(1971-), 男,博士,教授,从事电源及其磁技术研究;xgyang@hebut.edu.cn

  • 中图分类号: TM93

A resonance boosting and voltage double circuit for high voltage power supply

  • 摘要: 提出了一种高压电源谐振升压倍压电路,该电路由LC谐振电路与整流电路组成。对该电路的工作模式和稳态输出特性进行了分析;建立了该电路的数学模型:以归一化的形式定量描述了稳态输出电压与电流的增益、短路特性和开路特性、输出纹波与电压降、以及器件上的电应力,并分析了电路品质因数、归一化频率和电容比对输出特性的影响;对该电路进行了仿真与实验研究,仿真结果与实验结果具有很好的一致性,验证了数学模型的正确性。与C-W电路的对比研究结果表明:所提出的电路具有输出电压稳定、输出纹波小、短路特性好以及响应速度快的优点,满足高压小电流的应用需求。
  • 图  1  电路的结构和稳态波形图

    Figure  1.  Multiplier circuits and key steady-state waveforms

    图  2  稳态时四种等效电路

    Figure  2.  Equivalent circuit for various modes of operation

    图  3  高压电源输出特性

    Figure  3.  Output characteristics

    图  4  高压电源短路特性

    Figure  4.  Short-circuit characteristics

    图  5  仿真与模型计算结果

    Figure  5.  Results from simulation and the model

    图  6  LC谐振逆变升压倍压电路

    Figure  6.  LC resonant inverter and resonance boosting and voltage double circuit

    图  7  输入电压和输出电压的暂态波形

    Figure  7.  Simulated output and input voltage waveforms during the start-up process

    图  8  输入电压、输出电压稳态时的实验波形

    Figure  8.  Experimental waveforms of output voltage and input voltage

  • [1] Pokryvailo A, Carp C. Comparison of the dielectric strength of transformer oil under DC and repetitive multimillisecond pulses[J]. IEEE Electrical Insulation Magazine, 2012, 28(3): 40-49. doi: 10.1109/MEI.2012.6192366
    [2] 刘玺尧, 曾国强, 谭承君, 等. 基于罗耶谐振的微型X射线管高压电源的设计[J]. 核技术, 2013, 36: 080403. doi: 10.11889/j.0253-3219.2013.hjs.36.080403

    Liu Xiyao, Zeng Guoqiang, Tan Chengjun, et al. Design of high voltage power supply of miniature X-ray tube based on resonant Royer. Nuclear Techniques, 2013, 36: 080403 doi: 10.11889/j.0253-3219.2013.hjs.36.080403
    [3] Iqbal S, Singh G K, Besar R. A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply[J]. IEEE Trans Power Electronics, 2008, 23(2): 1003-1008. doi: 10.1109/TPEL.2008.917820
    [4] Scapellati C. High voltage power supplies for analytical instrumentation[J]. Spectroscopy-Springfield then Eugene then Duluth, 2004, 19(2): 35-36.
    [5] 周好斌, 钟桂香, 王毅. 静电除尘器用智能高压直流电源的研制[J]. 高电压技术, 2005, 31(5): 61-63. doi: 10.3969/j.issn.1003-6520.2005.05.023

    Zhou Haobin, Zhong Guixiang, Wang Yi. Design of intelligent high-voltage DC power supply for ESP. High Voltage Engineering, 2005, 31(5): 61-63 doi: 10.3969/j.issn.1003-6520.2005.05.023
    [6] 刘军. LCC-SPRC高压高频大功率电除尘电源的理论分析与功率参数设计[D]. 杭州: 浙江大学, 2010.

    Liu Jun. LCC-SPRC high voltage, high frequency and high power ESP power supply—theory analysis and power parameters design. Hangzhou: Zhejiang University, 2010
    [7] Martín-Ramos J A, Sáiz P J V, Pernía A M, et al. Optimal control of a high-voltage power supply based on the PRC-LCC topology with a capacitor as output filter[J]. IEEE Trans Industry Applications, 2013, 49(5): 2323-2329. doi: 10.1109/TIA.2013.2261040
    [8] Sun J, Ding X, Nakaoka M, et al. Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator[J]. IEE Proceedings—Electric Power Applications, 2000, 147(6): 527-534. doi: 10.1049/ip-epa:20000711
    [9] Hwang F, Shen Y, Jayaram S H. Low-ripple compact high-voltage DC power supply[J]. IEEE Trans Industry Applications, 2006, 42(5): 1139-1145. doi: 10.1109/TIA.2006.880845
    [10] Katzir L, Shmilovitz D. A matrix-like topology for high-voltage generation[J]. IEEE Trans Plasma Science, 2015, 43(10): 3681-3687. doi: 10.1109/TPS.2015.2469101
    [11] 李亚维, 谢敏, 蓝欣, 等. 200 kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28: 015016. doi: 10.11884/HPLPB201628.015016

    Li Yawei, Xie Min, Lan Xin, et al. A 200 kV high voltage DC power supply with high stability and low ripple. High Power Laser and Particle Beams, 2016, 28: 015016 doi: 10.11884/HPLPB201628.015016
    [12] Iqbal S. A hybrid symmetrical voltage multiplier[J]. IEEE Trans Power Electronics, 2014, 29(1): 6-12. doi: 10.1109/TPEL.2013.2251474
    [13] Ivensky G, Kats A, Ben-Yaakov S. An RC load model of parallel and series-parallel resonant DC-DC converters with capacitive output filter[J]. IEEE Transactions on Power Electronics, 1999, 14(3): 515-521.
  • 加载中
图(8)
计量
  • 文章访问数:  2359
  • HTML全文浏览量:  427
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-06-06
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回