留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹自由电子激光波荡器的设计、测量与优化

闫陇刚 邓德荣 张浩 张伟 张继东 杨兴繁 黎明

闫陇刚, 邓德荣, 张浩, 等. 太赫兹自由电子激光波荡器的设计、测量与优化[J]. 强激光与粒子束, 2018, 30: 113101. doi: 10.11884/HPLPB201830.180247
引用本文: 闫陇刚, 邓德荣, 张浩, 等. 太赫兹自由电子激光波荡器的设计、测量与优化[J]. 强激光与粒子束, 2018, 30: 113101. doi: 10.11884/HPLPB201830.180247
Yan Longgang, Deng Derong, Zhang Hao, et al. Design, measurement and optimization of undulator for terahertz free electron laser[J]. High Power Laser and Particle Beams, 2018, 30: 113101. doi: 10.11884/HPLPB201830.180247
Citation: Yan Longgang, Deng Derong, Zhang Hao, et al. Design, measurement and optimization of undulator for terahertz free electron laser[J]. High Power Laser and Particle Beams, 2018, 30: 113101. doi: 10.11884/HPLPB201830.180247

太赫兹自由电子激光波荡器的设计、测量与优化

doi: 10.11884/HPLPB201830.180247
基金项目: 

国家重大科学仪器设备开发专项 2011YQ130018

国家自然科学基金项目 11505174

国家自然科学基金项目 11505173

国家自然科学基金项目 11605190

详细信息
    作者简介:

    闫陇刚(1986-), 男, 硕士, 从事自由电子激光及其相关技术研究; 441038564@qq.com

    通讯作者:

    邓德荣(1979-), 男, 学士, 从事自由电子激光及其相关技术研究; lppmcm@163.com

  • 中图分类号: TL503.8

Design, measurement and optimization of undulator for terahertz free electron laser

  • 摘要: 波荡器电子轨迹中心偏移和磁场误差对CTFEL装置性能影响很大,通过前期设计和后期测量与优化将其限制在指标要求范围内。在前期设计中尽量避免引入全局性的系统误差:磁结构具有平面反对称结构,保证电子轨迹中心和波荡器磁轴重合;磁结构端部的特殊设计减弱了间隙对出口磁场二次积分的影响;机械系统的大梁和立柱具有良好的刚性,闭环控制系统保证了高的波荡器间隙控制精度,这些措施降低了间隙不一致引入的磁场误差。在后期测量与优化中削弱了磁场的残存全局系统误差和局部随机误差:利用磁场点测台测量了波荡器磁场的纵向和横向分布,通过调节标准单元组件位置对磁场进行了垫补和优化,优化后电子轨迹中心偏移、峰峰值误差、相位误差、好场区及其误差均满足指标要求。
  • 图  1  Radia计算模型及计算结果

    Figure  1.  Radia simulation model and result

    图  2  出口二次积分随间隙g的变化

    Figure  2.  Second integral of megnetic field at undulator exit with the gap g

    图  3  U38机械系统

    Figure  3.  Mechanical system of U38

    图  4  大梁和立柱受力变形

    Figure  4.  Deformations of beam and frame

    图  5  控制系统组成框图

    Figure  5.  Block graph of control system

    图  6  24.0 mm间隙下,磁场纵向分布和垫补优化后的电子轨迹

    Figure  6.  Longitudinal distribution of magnetic field and trajectory after shimming and optimization under the gap of 24.0 mm

    图  7  峰峰值误差和相位误差随间隙g的变化

    Figure  7.  Peak-to-peak error and phase error change with the gap g

    图  8  峰值磁场随间隙g的变化

    Figure  8.  Peak field change with the gap g

    图  9  横向场分布和好场区内误差ε

    Figure  9.  Transverse distribution of magnetic field and errors ε in good field region

    表  1  U38波荡器指标要求

    Table  1.   Specifications of undulator U38

    magnetic structure period /mm gap /mm period number max peak field /T max undulator parameter K electron trajectory center deviation/mm good field range /mm good field range error /% peak-to-peak error /% phase error /(°) total length /mm
    planar, anti-symmetry 38 18~32 42 >0.5 >1.77 < 0.1 >12 < 0.5 < 0.5 < 5 < 1700
    下载: 导出CSV
  • [1] Neil G R, Merminga L. Technical approaches for high-average-power free-electron lasers[J]. Review of Modern Physics, 2002, 74(3): 685-701. doi: 10.1103/RevModPhys.74.685
    [2] Jia Q K. Field integrals error of undulator[J]. Nuclear Instruments & Methods in Physics Research, 1999, 428(2): 589-592.
    [3] Qin B, Tan P, Yang L, et al. Design considerations of a planar undulator applied in a terahertz FEL oscillator[J]. Nuclear Inst and Methods in Physics Research A, 2013, 727(9): 90-96.
    [4] Walker R P. Phase errors and their effect on undulator radiation properties[J]. Physical Review Special Topics-Accelerators and Beams, 2013, 16(1): 122-130.
    [5] Li Y, Faatz B, Pflueger J. Undulator system tolerance analysis for the European X-ray free-electron laser[J]. Review of Modern Physics, 2008, 11(10): 320-325.
    [6] 许州, 杨兴繁, 黎明, 等. 高平均功率太赫兹自由电子激光装置设计[J]. 太赫兹科学与电子信息学报, 2013, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201301002.htm

    Xu Zhou, Yang Xingfan, Li Ming, et al. Design of a high average power terahertz-FEL facility. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-XXYD201301002.htm
    [7] 黎明, 杨兴繁, 许州, 等. CAEP太赫兹自由电子激光首次饱和出光[J]. 强激光与粒子束, 2017, 29: 100101. doi: 10.11884/HPLPB201729.170363

    Li Ming, Yang Xingfan, Xu Zhou, et al. First lasing of CAEP THz free electron laser. High Power Laser and Particle Beams, 2017, 29: 100101 doi: 10.11884/HPLPB201729.170363
    [8] 吴岱, 肖德鑫, 李凯, 等. 砷化镓光阴极直流高压注入器研究进展[J]. 强激光与粒子束, 2015, 27: 045101. doi: 10.11884/HPLPB201527.045101

    Wu Dai, Xiao Dexin, Li Kai, et al. Recent progress of GaAs high-voltage DC photo-injector. High Power Laser and Particle Beams, 2015, 27: 045101 doi: 10.11884/HPLPB201527.045101
    [9] 王汉斌, 杨兴繁, 潘清, 等. 光阴极直流高压电子枪工程设计[J]. 强激光与粒子束, 2013, 25(s0): 145-148. http://www.hplpb.com.cn/article/id/7812

    Wang Hanbin, Yang Xingfan, Pan Qing, et al. Engineering design of photoemission DC high voltage electron gun. High Power Laser and Particle Beams, 2013, 25(s0): 145-148 http://www.hplpb.com.cn/article/id/7812
    [10] Luo X, Lao C, Zhou K, et al. Design and fabrication of the 2×4 -cell superconducting linac module for the free-electron laser[J]. Nuclear Instruments & Methods in Physics Research, 2017, 871: 30-34.
    [11] Vinokurov N. Free electron lasers as a high-power terahertz sources[J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(10): 1123-1143.
    [12] 窦玉焕, 束小建, 邓德荣, 等. 中物院高功率THz FEL装置的理论分析和优化设计[J]. 强激光与粒子束, 2013, 25(3): 662-666. doi: 10.3788/HPLPB20132503.0662

    Dou Yuhuan, Shu Xiaojian, Deng Derong, et al. Design and simulations of CAEP high power THz FEL. High Power Laser and Particle Beams, 2013, 25(3): 662-666 doi: 10.3788/HPLPB20132503.0662
    [13] Jia Q K. Parameter design considerations for an oscillator IR-FEL[J]. Chinese Physics C, 2017 (1): 187-194.
    [14] Halbach K. Application of permanent magnets in accelerators and electron storage rings[J]. Journal of Applied Physics, 1985, 57(8): 3605-3608. doi: 10.1063/1.335021
    [15] Elleaume P, Onuki A H. Undulators, wigglers and their applications[M]. London: CRC Press, 2002.
    [16] 张继东, 周巧根, 张红辉, 等. 可变椭圆极化波荡器EPU10.0的传动控制[J]. 原子能科学技术, 2006, 40(5): 602-604. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200605020.htm

    Zhang Jidong, Zhou Qiaogen, Zhang Honghui et al. Phase driving system for variable elliptically polarized undulator EPU10.0. Atomic Energy Science and Technology, 2006, 40(5): 602-604 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200605020.htm
    [17] Tanaka T, Goto S, Hara T, et al. Undulator commissioning by characterization of radiation in X-ray free electron lasers[J]. Review of Modern Physics, 2012, 15(11): 41-73.
    [18] Li P, Wei T, Li Y, et al. Magnetic design of an Apple-X afterburner for the SASE3 undulator of the European XFEL[J]. Nuclear Instruments & Methods in Physics Research, 2017, 870: 103-109.
    [19] Elleaume P, Chavanne J, Faatz B. Design considerations for a 1 Å SASE undulator[J]. Nuclear Instruments & Methods in Physics Research, 2000, 455(3): 503-523.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  202
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-10-17
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回