留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米NiAl-Ni和Ni3Al-Ni合金的低温电阻特性

郑海涛 代飞 张莉莉 罗江山 林伟 王凯 易勇 雷海乐

郑海涛, 代飞, 张莉莉, 等. 纳米NiAl-Ni和Ni3Al-Ni合金的低温电阻特性[J]. 强激光与粒子束, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251
引用本文: 郑海涛, 代飞, 张莉莉, 等. 纳米NiAl-Ni和Ni3Al-Ni合金的低温电阻特性[J]. 强激光与粒子束, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251
Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251
Citation: Zheng Haitao, Dai Fei, Zhang Lili, et al. Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature[J]. High Power Laser and Particle Beams, 2018, 30: 124101. doi: 10.11884/HPLPB201830.180251

纳米NiAl-Ni和Ni3Al-Ni合金的低温电阻特性

doi: 10.11884/HPLPB201830.180251
基金项目: 

国家自然科学基金项目 11674291

详细信息
    作者简介:

    郑海涛(1992—),男,硕士研究生,从事纳米晶金属制备及其低温热电性能研究; 532886568@qq.com

    通讯作者:

    雷海乐(1975—),男,研究员,从事极端条件下的原子分子物理研究;hailelei@caep.ac.cn

  • 中图分类号: O513

Resistivity of nanostructure NiAl-Ni and Ni3Al-Ni alloys at low temperature

  • 摘要: 为了深入理解纳米Al-Ni合金低温下的电子输运过程,使用自主研发的电磁感应加热-自悬浮定向流法制备出Al,Ni和Al-Ni纳米合金粉末,并采用真空热压设备将纳米粉末压制成纳米晶块体,利用自主搭建的低温热电测量系统研究了Al-Ni纳米合金的电阻率随温度(8~300 K)的变化规律。研究结果表明:Al-Ni纳米合金由于形成有序晶相而仍然与Al,Ni纳米晶一样,电阻率随温度的降低而降低。纳米Ni3Al-Ni和NiAl-Ni在居里温度点附近出现了电阻率随温度变化的极大值点,因为单质Ni的影响,Ni3Al-Ni的居里温度比粗晶Ni3Al提高了20 K。由于磁子-电子散射作用和声子-电子散射作用,纳米Ni3Al-Ni,NiAl-Ni和Ni的电阻率在低温下(8~40 K)与温度呈T2T4关系。
  • 图  1  样品的X射线衍射图

    Figure  1.  XRD patterns of the samples

    图  2  纳米晶Al,Ni,Ni3Al-Ni和NiAl-Ni的SEM图

    Figure  2.  SEM images of Al, Ni, Ni3Al-Ni and NiAl-Ni respectively

    图  3  纳米晶Ni,Ni3Al-Ni和NiAl-Ni的磁滞回线

    Figure  3.  Hysteresis loops of nanostructure Ni, NiAl-Ni and Ni3Al-Ni

    图  4  样品电阻率随温度的变化趋势

    Figure  4.  Sample resistivity varies with temperature

    图  5  dρ/dT随温度的变化(图中符号为实验值, 曲线为拟合值)

    Figure  5.  Temperature derivative of resistivity plotted against temperature

    图  6  样品在高温区的电阻率和拟合曲线

    Figure  6.  Electrical resistivities at 100~300 K of the samples

    图  7  样品在低温下的电阻率和拟合曲线

    Figure  7.  Electrical resistivities at 8~40 K of the samples

    表  1  样品的相对密度和平均晶粒尺寸

    Table  1.   Relative density of samples and average grain size

    sample number sample material relative density/% average grain size/nm
    1# Al 79.2 62.5
    2# Ni 69.5 36.4
    3# Ni3Al-Ni 68.7 29.0
    4# NiAl-Ni 65.6 31.5
    下载: 导出CSV

    表  2  样品的低温电阻率根据式(1)拟合结果

    Table  2.   Residual resistivity(ρ0), coefficient and the power exponents obtained by fitting the experimental electrical resistivity of samples from equation (1)

    sample name ρ0/(Ω·m) a b m n
    Al 1.02×10-3 1.49×10-9 6.47×10-13 2.5 4
    Ni 1.33×10-6 3.96×10-11 5.72×10-14 2 4
    Ni3Al-Ni 1.38×10-5 1.31×10-10 2.87×10-14 2 4
    NiAl-Ni 1.95×10-4 6.94×10-10 1.99×10-13 2 4
    下载: 导出CSV
  • [1] Tanimoto H, Eiji K, Mizubayashi H. Characterization and determination of elastic property of high-density nanocrystalline gold prepared by gas-deposition method[J]. Materials Transactions, 2003, 44(1): 94-103. doi: 10.2320/matertrans.44.94
    [2] Brandlr, Derlet P, Swygenhoven H. Dislocation mediated plasticity in nanocrystalline Al the strongest size[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19: 074005. doi: 10.1088/0965-0393/19/7/074005
    [3] Ederth J, Kish L, Olsson E. In situ electrical transport during isothermal annealing of nanocrystalline gold films[J]. Journal of Applied Physics, 2002, 91(3): 1529-1535. doi: 10.1063/1.1427399
    [4] Madduri, Kaul S N. Disorder-induced non-Fermi liquid behavior of electrical resistivity in nanocrystalline Ni[J]. Physica B: Condensed Matter, 2014, 448: 147-150. doi: 10.1016/j.physb.2014.03.054
    [5] Qin X Y, Zhang L, Jiang L D, et al. Low-temperature resistance and its temperature dependence in nanostructured silver[J]. Physical Review B, 1997, 56(16): 10596-10604. doi: 10.1103/PhysRevB.56.10596
    [6] Okram, Soni A, Rawat R, et al. Anomalous electrical transport behavior in nanocrystalline nickel[J]. Nanotechnology, 2008, 19: 185711. doi: 10.1088/0957-4484/19/18/185711
    [7] AusM J, Szpunar B, Erp U, et al. Electrical resistivity of bulk nanocrystalline nickel[J]. Journal of Applied Physics, 1994, 75(7): 3632-3634. doi: 10.1063/1.356076
    [8] Andrievskii R A, Kalinniko G V, Kobelev N P, et al. Structure and physicomechanical properties of nanocrystalline boride-nitride films[J]. Physics of the Solid State, 1997, 39(10): 1661-1666. doi: 10.1134/1.1129885
    [9] Zeng H, Ying U, Zhang J X, et al. Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals[J]. Progress in Natural Science: Materials International, 2013, 23(1): 18-22. doi: 10.1016/j.pnsc.2013.01.003
    [10] Tomasz C, Stanislaw W. Structure and mechanical properties of NiAl and Ni3Al-based alloys[J]. International Journal of Mechanical Sciences, 2000, 42(8): 1499-1518. doi: 10.1016/S0020-7403(99)00087-9
    [11] Grabke H J. Oxidation of NiAl and FeAl[J]. Intermetallics, 1999, 7(10): 1153-1158. doi: 10.1016/S0966-9795(99)00037-0
    [12] 李裕. 纳米Al/Al2O3复合材料的制备与低温热容性能研究纳米[D]. 绵阳: 西南科技大学, 2014: 22-23.

    Li Yu. Preparation and low-temperature specific heat of Al/Al2O3 nanostryalline materials. Mianyang: Southwest University of Science and Technology, 2014: 22-23
    [13] 宋言红, 罗江山, 雷海乐, 等. 纳米晶Al的快中子辐照效应研究[J]. 原子能科学技术, 2015, 49: 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm

    Song Yanhong, Luo Jiangsan, Lei Haile, et al. Effect of neutron irradiation on nanocrystalline Al. Atomic Energy Science and Technology, 2015, 49: 355-361 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201502026.htm
    [14] Sigfusson T I, Bernhoeft N R, Lonzarich G G. The de Haas-van Alphen effect, exchange splitting and Curie temperature in the weak itinerant ferromagnetic Ni3Al[J]. Journal of Physics F: Metal Physics, 1984, 14(14): 2141-2154.
    [15] Boer F R, Schinkel C J, Biesterbos J. et al. Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; giant moment inducement in Fe-doped Ni3Ga[J]. Journal of Applied Physics, 1969, 40(3): 1049-1055. doi: 10.1063/1.1657528
    [16] Abhyankar A C, Kaul S N. Effect of off-stoichiometry and site disorder on the properties of Ni3Al: I electrical and magneto-transport[J]. Journal of Physics: Condensed Matter, 2008, 20: 445227. doi: 10.1088/0953-8984/20/44/445227
    [17] Mobius A, Goedsche F, Elefa D, et al. Deviations from Matthiessen's rule in the low-temperature resistivity of iron[J]. Physica Status Solidi B—Basic Solid State Physics, 1979, 95(1): 203-214. doi: 10.1002/pssb.2220950123
    [18] Kaul S N, Kettler W, Rosenberg M. Evidence for a magnetic contribution to the electrical resistivity in amorphous Fe80B20-xCx alloys[J]. Physical Review B, 1986, 33(7): 4987-4997. doi: 10.1103/PhysRevB.33.4987
    [19] 孙丽俊, 代飞, 罗江山, 等. 铝纳米晶的低温导电特性研究[J]. 物理学报, 2016, 65: 137303 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm

    Sun Lijun, Dai fei, Luo Jiangshan, et al. Electrical resistivity of nanostructured aluminum at low temperature. Acta Physica Sinica, 2016, 65: 1373031 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613029.htm
    [20] Ziman J M. Electrons and phonons[M]. Oxford: Oxford University Press, 1960: 334-335.
    [21] Aveek B, Achyut B, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: Applicability of Bloch-Grüneisen theorem[J]. Physical Review B, 2006, 74: 035426. doi: 10.1103/PhysRevB.74.035426
    [22] Moussouros P K, Kos J F. Temperature dependence of the electrical resistivity of copper at low temperatures[J]. Canadian Journal of Physics, 1977, 55: 2071-2079. doi: 10.1139/p77-251
    [23] Qian L H, Lu Q H, Kong W J. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu[J]. Scripta Materialia, 2004, 50(11): 1407-1411. doi: 10.1016/j.scriptamat.2004.02.026
    [24] Isshiki M, Fukudat Y, Igaki K. Temperature dependence of the electrical resistivity of pure cobalt at low temperatures[J]. Journal of Physics F: Metal Physics, 1984, 14(12): 3007-3013. doi: 10.1088/0305-4608/14/12/021
    [25] Grieg D, Harrison J P. The low temperature electrical transport properties of nickel and dilute nickel-copper alloys[J]. Philosophical Magazine, 1965, 12(115): 71-79. doi: 10.1080/14786436508224948
    [26] Kaul S N. Validity of Kohler's rule for nickel-copper alloys at high temperatures[J]. Solid State Communications, 1974, 12 (15): 1821-1825.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  934
  • HTML全文浏览量:  179
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2018-11-03
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回