留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线极化波对带电粒子的加速机制

王志国 周小文 刘超超 许琛 贾立颖 王倩 黄可淼 赵欣 刘荣明 李炳山

王志国, 周小文, 刘超超, 等. 线极化波对带电粒子的加速机制[J]. 强激光与粒子束, 2019, 31: 014001. doi: 10.11884/HPLPB201931.180188
引用本文: 王志国, 周小文, 刘超超, 等. 线极化波对带电粒子的加速机制[J]. 强激光与粒子束, 2019, 31: 014001. doi: 10.11884/HPLPB201931.180188
Wang Zhiguo, Zhou Xiaowen, Liu Chaochao, et al. Charged particles acceleration by linearly polarized electromagnetic wave in medium with tapered refractive index[J]. High Power Laser and Particle Beams, 2019, 31: 014001. doi: 10.11884/HPLPB201931.180188
Citation: Wang Zhiguo, Zhou Xiaowen, Liu Chaochao, et al. Charged particles acceleration by linearly polarized electromagnetic wave in medium with tapered refractive index[J]. High Power Laser and Particle Beams, 2019, 31: 014001. doi: 10.11884/HPLPB201931.180188

线极化波对带电粒子的加速机制

doi: 10.11884/HPLPB201931.180188
基金项目: 

北京矿冶科技集团青年基金项目 QCJ201829

国家自然科学基金项目 11575015

详细信息
    作者简介:

    王志国(1990—), 男,硕士,主要从事电磁极化波带电粒子加速原理的研究; wangzg@magmat.com

    通讯作者:

    刘荣明(1982—),男,博士,主要从事带电粒子加速原理的研究; liurongming@magmat.com

  • 中图分类号: O411.4

Charged particles acceleration by linearly polarized electromagnetic wave in medium with tapered refractive index

  • 摘要: 讨论了线极化波对带电粒子三种加速机制:(1)介质折射率递减但外加磁场保持不变;(2)介质折射率不变但外加磁场递增;(3)介质折射率递减且外加磁场递增。结果显示,在一定的加速距离内,按照机制(3)利用LPEMW加速电子的效率最高。另外,机制(3)可以避免机制(2)中电子在加速过程中回飞的问题,这一点在利用线极化波(LPEMW)加速电子束或带电粒子束时非常重要。
  • 图  1  在固定外磁场中,对于不同的α值,相对论因子γ关于z的变化曲线

    Figure  1.  Relativistic factor γ as a function of z for different α values in the case of a fixed external magnetic field

    图  2  在均匀介质中,不同的β值时相对论因子γ与距离z的变化曲线

    Figure  2.  Relativistic factor γ as a function of z for different β values in the homogeneous refractive medium

    图  3  在均匀介质中,不同的β值时电子运动距离z与时间t的函数关系

    Figure  3.  Electron travel distance in z direction as a function of time t for different β values in case of a constant refractive index

    图  4  三种加速机制下的线极化波对电子加速的相对论因子γ与距离z的函数关系

    Figure  4.  Relativistic factor γ as a function of z for electron acceleration by the linearly polarized EMW for three cases: VRIS, VEMFS and their combination (i.e., VRIEMFS)

    图  5  在变化的介质中,沿增大的外加磁场方向传播的线极化波对带电粒子加速的粒子在z=0.1 m处相对论因子γB0的关系

    Figure  5.  Values of γ reached at z=0.1 m as a function of B0 for charged particles acceleration by the linearly polarized EMW along an increasing external magnetic field in a medium with a tapered refractive index

    图  6  三种机制下粒子回旋半径R与距离z的关系

    Figure  6.  Cyclotron radius R=(x2+y2)1/2 as a function of z for the three acceleration mechanisms

    图  7  VRIEMFS机制下,电子初速度v0不同时,相对论因子γz的变化曲线

    Figure  7.  Relativistic factor γ as a function of z for different v0 in case of VRIEMFS

  • [1] White M G, Isaila M, Prelec K, et al. Acceleration of nitrogen ions to 7.4 GeV in the Princeton Particle Accelerator[J]. Science, 1971, 174: 1121-1123. doi: 10.1126/science.174.4014.1121
    [2] Hoffmann D H H, Blazevic A, Rosmej O N, et al. Particle accelerator physics and technology for high energy density physics research[J]. European Physical Journal D, 2007, 44(2): 293-300. doi: 10.1140/epjd/e2006-00125-0
    [3] Murphy C D, Trines R, Vieira J, et al. Evidence of photon acceleration by laser wake fields[J]. Physics of Plasmas, 2006, 13: 033108. doi: 10.1063/1.2178650
    [4] Suk H. Electron acceleration based on selftrapping by plasma wake fields[J]. Journal of Applied Physics, 2002, 91(1): 487-491. doi: 10.1063/1.1423392
    [5] Sullivan D J. Simulation of preaccelerated particles in the plasma beatwave accelerator[J]. IEEE Trans Nuclear Science, 1983, 30(4): 3159-3161. doi: 10.1109/TNS.1983.4336600
    [6] Banna S, Mizrahi A, Schächter L. PASER-particle acceleration by stimulated emission of radiation: theory, experiment, and future applications[J]. Laser & Photonics Reviews, 2010, 3(1/2): 97-122.
    [7] Shimoda K. Proposal for an electron accelerator using an optical maser[J]. Applied Optics, 1962, 1(1): 33-35. doi: 10.1364/AO.1.000033
    [8] Flanz J. Accelerators for charged particle therapy[J]. Modern Physics Letters A, 2015, 30: 1540020. doi: 10.1142/S0217732315400209
    [9] Hatori S, Kurita T, Hayashi Y, et al. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center[J]. Nuclear Instruments & Methods in Physics Research, 2005, 241(1): 862-869.
    [10] Tenneti S, Garg R, Hrenya C M, et al. Direct numerical simulation of gas-solid suspensions at moderate Reynolds number: Quantifying the coupling between hydrodynamic forces and particle velocity fluctuations[J]. Powder Technology, 2010, 203(1): 57-69. doi: 10.1016/j.powtec.2010.03.042
    [11] Kong L B, Wang H Y, Hou Z L, et al. The self-consistent nonlinear theory of charged particle beam acceleration by slowed circularly polarized electromagnetic waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. doi: 10.1088/1009-0630/15/12/02
    [12] Kong L B, Hou Z L, Xie C R. The self-consistent nonlinear theory of electron cyclotron maser based on anomalous Doppler effect[J]. Applied Physics Letters, 2011, 98: 261502. doi: 10.1063/1.3604016
  • 加载中
图(7)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  279
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2018-12-20
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回