Optimization of interference fit between armature and rail in missile's quadrupole electromagnetic field
-
摘要: 为了促进四级电磁轨道发射器在地空导弹武器发射中的应用,对四级电枢的过盈结构进行了研究。在有限元软件Ansys Workbench三维过盈装配仿真的基础上,选择最大等效应力、接触面积系数、接触压强均匀系数和相对接触压强系数四个表征接触特性的评价指标,采用正交试验的方法对四级电枢的过盈量、尾翼宽度、尾翼厚度和过盈长度4个过盈结构参数进行了综合优化。结果表明,采用过盈量2 mm、尾翼宽度140 mm、尾翼厚度40 mm、过盈长度270 mm的优水平组合能够使发射前期电枢和轨道间接触特性更理想,可为四级电枢结构设计提供参考。Abstract: To promote the application of quadrupole electromagnetic orbital launcher in ground-to-air missile launching, the interference structure of quadrupole armature was studied. On the basis of finite element software ANSYS Workbench and its 3D interference fit simulation, with four evaluation indexes-maximum equivalent stress, coefficient of contact area, uniformity coefficient of contact pressure and coefficient of relative contact pressure-selected to describe the contact characteristics, the four interference structure parameters of quadrupole armature (interference amount and length, tail width and thickness) were optimized comprehensively by orthogonal experiment. The results show that the optimal combination of 2 mm interference amount, 140 mm tail width, 40 mm tail thickness and 270 mm interference length can make the contact characteristics between armature and rail ideal in the early stage of launch, which can be used as a reference for the design of quadrupole armature structure.
-
表 1 试验指标计算方式
Table 1. Calculation method for experiment index
code experiment index calculation method 1 maximum equivalent stress σ obtained by simulation 2 coefficient of contact area S1 S1=A1/A0 3 uniformity coefficient of contact pressure S2 S2=A2/A1 4 coefficient of relative contact pressure p p=p0/pm 表 2 参数水平
Table 2. Parameter levels
interference amount a/mm tail width b/mm tail thickness c/mm interference length l/mm level 1 2 140 40 230 level 2 3 160 50 250 level 3 4 180 60 270 表 3 正交试验方案及结果记录
Table 3. Scheme and results of orthogonal experiment
experiment code a/mm b/mm c/mm l/mm σ/MPa S1 S2 p 1 2 140 40 230 122.13 0.518 2 0.150 8 0.339 1 2 2 160 50 250 124.66 0.564 8 0.121 9 0.353 0 3 2 180 60 270 126.27 0.590 1 0.106 6 0.339 5 4 3 160 40 270 190.15 0.531 7 0.160 4 0.396 8 5 3 180 50 230 183.60 0.485 1 0.126 8 0.269 6 6 3 140 60 250 189.81 0.589 7 0.155 8 0.415 6 7 4 180 40 250 247.49 0.474 7 0.140 7 0.325 6 8 4 140 50 270 255.55 0.575 9 0.197 7 0.444 8 9 4 160 60 230 249.75 0.455 7 0.177 1 0.322 3 表 4 对最大等效应力的影响
Table 4. Influence of combination of parameters on maximum equivalent stress
optimal combination $ \overline{\sigma_1}$/MPa $ \overline{\sigma_2}$/MPa $ \overline{\sigma_3}$/MPa R/MPa a=2 mm 124 188 251 127 b=180 mm 189 188 186 3 c=40 mm 187 188 189 2 l=230 mm 185 187 191 6 influence degree: a≫l > b > c 表 5 对接触面积系数的影响
Table 5. Influence of combination of parameters on coefficient of contact area
optimal combination $ \overline{S_{1,1}}$ $ \overline{S_{1,2}}$ $ \overline{S_{1,3}}$ R a=2 mm 0.558 0.536 0.502 0.056 b=140 mm 0.561 0.517 0.516 0.045 c=60 mm 0.508 0.542 0.545 0.037 l=270 mm 0.486 0.543 0.566 0.080 influence degree: l > a > b > c 表 6 对接触压强均匀系数的影响
Table 6. Influence of combination of parameters on uniformity coefficient of contact pressure
optimal combination $ \overline{S_{2,1}}$ $ \overline{S_{2,2}}$ $ \overline{S_{2,3}}$ R a=4 mm 0.126 0.148 0.172 0.046 b=140 mm 0.168 0.153 0.125 0.043 c=40 mm 0.151 0.149 0.147 0.004 l=270 mm 0.152 0.139 0.155 0.016 influence degree: a≥b > l > c 表 7 对相对接触压强系数的影响
Table 7. Influence of combination of parameters on coefficient of relative contact pressure
optimal combination $ \overline{P_1}$ $ \overline{P_2}$ $ \overline{P_3}$ R a=4 mm 0.344 0.361 0.364 0.020 b=140 mm 0.400 0.357 0.312 0.087 c=60 mm 0.354 0.356 0.359 0.005 l=270 mm 0.310 0.365 0.394 0.084 influence degree: b≥l > a > c 表 8 优水平试验记录
Table 8. Results of better level experiment
experiment code a/mm b/mm c/mm l/mm σ/MPa S1 S2 p 10 2 140 40 270 127.61 0.524 6 0.180 9 0.442 9 -
[1] McNab I R. Large-scale pulsed power opportunities and challenges[J]. IEEE Trans Plasma Science, 2014, 42(5): 1118-1126. doi: 10.1109/TPS.2014.2303884 [2] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4): 1052-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htmLi Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development. High Voltage Engineering, 2014, 40(4): 1052-1064 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htm [3] 马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201606001.htmMa Weiming, Lu Junyong. Electromagnetic launch technology. Journal of National University of Defense Technology. 2016, 38(6): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201606001.htm [4] 郑红星, 萧剑平, 曹桂珍, 等. 小型战术导弹电磁兼容性测试与仿真分析研究[J]. 弹箭与指导学报, 2013, 33(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201301012.htmZheng Hongxing, Xiao Jianping, Cao Guizhen, et al. The electromagnetic compatibility testing and simulation analysis research of small tactical missiles. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(1): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201301012.htm [5] 林庆华, 栗保明. 电磁轨道炮瞬态温度场的数值模拟[J]. 工程热物理学报, 2017, 38(1): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201701026.htmLin Qinghua, Li Baoming. Numerical simulation of transient temperature field in the electromagnetic railgun. Journal of Engineering Thermophysics, 2017, 38(1): 149-154 https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201701026.htm [6] 王志恒, 万敏, 李小将. 电磁轨道炮接触热时空分布特性分析[J]. 高压物理学报, 2016, 30(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201606012.htmWang Zhiheng, Wan Min, Li Xiaojiang. Characteristic of temporal and spatial distribution of railgun contact heat. Chinese Journal of High Pressure Physics, 2016, 30(6): 511-516 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201606012.htm [7] 关继红. 增强型电磁轨道发射装置受力及变形研究[D]. 秦皇岛: 燕山大学, 2017: 64-72.Guan Jihong. Study on force and rails deflection of augmented electromagnetic rail launcher. Qinhuangdao: Yanshan University, 2017: 64-72 [8] Marshall R A, Wang Y. Railguns: their science and technology[M]. Beijing: China Machine Press, 2004: 3-24. [9] 鲁军勇, 孙文. 导轨式电磁发射装置轨道抗烧蚀技术初步研究[J]. 海军工程大学学报, 2016, 28(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1002.htmLu Junyong, Sun Wen. Preliminary research on erosion technique of rail electromagnetic launch system. Journal of Naval University of Engineering, 2016, 28(3): 7-10 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1002.htm [10] Li D, Meinke R. Electromagnetic launch by linear quadrupole field[C]//IEEE 34th Annual Conference on Industrial Electronics (IECON 2008). 2008. [11] 杨志勇. 导弹四级场电磁轨道发射技术研究[D]. 西安: 空军工程大学, 2017: 11-12.Yang Zhiyong. Reseach on missile quadrupole electromagnetic orbital launch technology. Xi'an: Air Force Engineering University, 2017: 11-12 [12] 黄立阳. 电磁发射装置转捩机理研究与优化设计[D]. 秦皇岛: 燕山大学, 2017: 16-25.Huang Liyang. Transition mechanism study and structure optimization design of electromagnetic launcher. Qinhuangdao: Yanshan University, 2017: 16-25 [13] 冯登, 夏胜国, 陈立学, 等. 基于过盈配合的C形电枢轨道初始接触特性分析[J]. 高电压技术, 2014, 40(4): 1077-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404018.htmFeng Deng, Xia Shengguo, Chen Lixue, et al. Characteristic analysis of the initial contact between C-shaped armature and rail based on interference fit. High Voltage Engineering, 2014, 40(4): 1077-1083 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404018.htm [14] 刘峰, 党晟罡, 赵丽曼, 等. H形固体电枢形状设计及接触应力分析[J]. 火炮发射与控制学报, 2015, 36(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201501001.htmLiu Feng, Dang Shenggang, Zhao Liman, et al. Shape design and contact stress analysis of H-shape solid armature. Journal of Gun Launch & Control, 2015, 36(1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201501001.htm [15] 李刚. 电磁轨道炮C型固体电枢的优化设计[D]. 秦皇岛: 燕山大学, 2013: 36-42.Li Gang. Optimization design of C-shaped solid armatures in electromagnetic railgun. Qinhuangdao: Yanshan University, 2013: 36-42 [16] 李敏堂, 潘如政, 王凤忠, 等. 高速电枢的尾翼结构设计及实验研究[J]. 强激光与粒子束, 2012, 24(4): 912-916. doi: 10.3788/HPLPB20122404.0912Li Mintang, Pan Ruzheng, Wang Fengzhong, et al. Design and experiment of tail structure of armature with high velocity. High Power Laser and Particle Beams, 2012, 24(4): 912-916 doi: 10.3788/HPLPB20122404.0912 [17] 靳智, 沈培辉, 刘凯. 电磁轨道炮固体电枢的运动特性分析[J]. 弹箭与制导学报, 2014, 34(1): 115-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201401030.htmJin Zhi, Shen Peihui, Liu Kai. The movement chatacteristics analysis of solid armature of electromagnetic railgun. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(1): 115-117 https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD201401030.htm