Quasi-monoenergetic neutron single event effects
-
摘要: 对国际上用于单粒子效应(SEE)研究的准单能中子源进行了相关调研,对产生准单能中子源的7Li(p, n)7Be核反应、装置布局以及表征中子场性质的中子注量率、中子能谱、中子束流轮廓及其均匀性、热中子本底等参数的理论计算及实验测量进行了系统的介绍。进行准单能中子SEE实验要求中子源有较高的中子注量率水平、较大的束流轮廓、较好的束流均匀性以及较低的热中子本底,并且能测量出精确的中子能谱。对准单能中子SEE实验过程以及三种中子SEE截面的尾部修正方法进行了介绍。Abstract: The international quasi-monoenergetic neutron sources for the single event effect (SEE) study are investigated, the related issues including the 7Li(p, n)7Be nuclear reaction, the facility layout, and the theoretical calculations and experimental measurements of the neutron field parameters such as the neutron flux, the neutron energy spectrum, the neutron beam profile and its uniformity, and the thermal neutron background, are systematically introduced. The quasi-monoenergetic neutron SEE experiments require that the neutron source have a high neutron flux, large and uniform beam spot, and low thermal neutron background, and that an accurate neutron energy spectrum be obtained through experiments. The quasi-monoenergetic neutron SEE experiments and three methods for the tail correction of neutron SEE cross sections are introduced.
-
图 1 日本理化学研究所(RIKEN)使用飞行时间法测量得到的不同能量质子轰击10 mm厚7Li靶在0°散射角距离靶12 m处的中子能谱[21]
Figure 1. Energy spectra of quasi-monoenergetic neutron sources generated from a 10 mm thick 7Li target bombarded by protons of different energies at RIKEN. They were measured on the neutron beam line at 12 m from the 7Li target by the TOF method[21]
表 1 国际上用于SEE研究的各7Li(p, n)中子源装置及相关参数[10, 18]
Table 1. 7Li(p, n) neutron source facilities for SEE tests and the related parameters[10, 18]
institution country energy/MeV beam current/μA ΔE/MeV distance/m flux/(cm-2·s-1) UC Davis USA 40~60 10 1 3 6×105 UCL Belgium 20~65 10 2 3.3 106 TRIUMF Canada 70~200 0.3 0.7 ~1 105 TSL Sweden 25~180 10 1 3 3×105 RCNP Japan 392 1.0 1 ~1 3×105 TIARA Japan 30~85 3 2 5.2 1.2×105 CYRIC Japan 50~8520~50 3(H+)10(H-) 1 1.0 1.0×106~107 -
[1] Petersen E. Single event effects in aerospace[M]. Hoboken, New Jersey: Wiley-IEEE Press, 2012: 48-57. [2] Ziegler J F. Terrestrial cosmic ray intensities[J]. IBM Journal of Research and Development, 1998, 42(1): 125-139. [3] Normand E, Baker T J. Altitude and latitude variations in avionics SEU and atmospheric neutron flux[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1484-1490. doi: 10.1109/23.273514 [4] 蔡明辉, 韩建伟, 李小银, 等. 临近空间大气中子环境的仿真研究[J]. 物理学报, 2009, 58(9): 6659-6664. doi: 10.3321/j.issn:1000-3290.2009.09.124Cai Minghui, Han Jianwei, Li Xiaoyin, et al. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664 doi: 10.3321/j.issn:1000-3290.2009.09.124 [5] Hands A, Dyer C S, Lei F. SEU rates in atmospheric environments: variations due to cross-section fits and environment models[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2026-2034. doi: 10.1109/TNS.2009.2013466 [6] Normand E. Single event upset at ground level[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2742-2750. doi: 10.1109/23.556861 [7] IEC TS 62396, Process management for avionics: atmospheric radiation effects-Part 1: accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment[S]. [8] 曹秀云. 临近空间飞行器成为各国近期研究的热点(上)[J]. 中国航天, 2006(6): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htmCao Xiuyun. Near space vehicles have become a hot research topic for several years in many countries (Ⅰ). Aerospace China, 2006(6): 32-36 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT200606009.htm [9] 李怡勇, 李智, 沈怀荣. 临近空间飞行器发展与应用分析[J]. 装备指挥技术学院学报, 2008, 19(2): 61-65. doi: 10.3783/j.issn.1673-0127.2008.02.015Li Yiyong, Li Zhi, Shen Huairong. Development and application analysis of near space vehicles. Journal of the Academy of Equipment Command & Technology, 2008, 19(2): 61-65 doi: 10.3783/j.issn.1673-0127.2008.02.015 [10] 中村刚史, 马场首, 伊部英治, 等. 大气中子在先进存储器件中引起的软错误[M]. 北京: 国防工业出版社, 2015: 62-147.Nakamura T, Ibe E, Kamayama H, et al. Terrestrial neutron-induced soft errors in advanced memory devices. Beijing: National Defense Industry Press, 2015: 62-147 [11] Autran J L, Roche P, Borel J, et al. Altitude SEE test European platform (ASTEP): project overview and first results in CMOS 130 nm and perspectives[J]. IEEE Transactions on Nuclear Science, 2007, 54(4): 1002-1009. doi: 10.1109/TNS.2007.891398 [12] King M P, Reed R A, Weller R A, et al. Electron-induced single-event upsets in static random access memory[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4122-4129. doi: 10.1109/TNS.2013.2286523 [13] 丁大钊, 叶春堂, 赵志祥, 等. 中子物理学(上册)[M]. 2版. 北京: 原子能出版社, 2005.Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron Physics (Part Ⅰ). 2nd ed. Beijing: Atomic Energy Press, 2005 [14] Miller F, Weulersse C, Carriere T, et al. Investigation of 14 MeV neutron capabilities for SEU hardness evaluation[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2789-2796. doi: 10.1109/TNS.2013.2241078 [15] Gasiot G, Ferlet-Cavrois V, Baggio J, et al. SEU sensitivity of bulk and SOI technologies to 14-MeV neutrons[J]. IEEE Transactions on Nuclear Science, 2002, 49(6): 3032-3037. doi: 10.1109/TNS.2002.805395 [16] 范辉, 郭刚, 沈东军, 等. 14 MeV中子引发SRAM器件单粒子效应实验研究[J]. 原子能科学技术, 2015, 49(1): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htmFan Hui, Guo Gang, Shen Dongjun, et al. Experimental study on 14 MeV neutron induced single-event-effect in SRAMs. Atomic Energy Science and Technology, 2015, 49(1): 171-175 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201501029.htm [17] JEDEC Standard, no. 89, Measurement and reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices[S]. 2001. [18] Baba M. Quasi-monoenergetic neutron sources[C]//Proc Sci Syrmp on Fast Neutron Detection and Its Application (FNDA). 2006: 1-10. [19] Baba M, Nauchi Y, Iwasaki T, et al. Characterization of a 40-90 MeV 7Li(p, n) neutron source at TIARA using a proton recoil telescope and a TOF method[J]. Nuclear Instruments & Methods in Physics Research, 1999, 428(2/3): 454-465. [20] Watson J W, Pourang R, Abegg R, et al. 7Li(p, n)7Be and 12C(p, n)12N reactions at 200, 300, and 400 MeV[J]. Physical Review C, 1989, 40(1): 22-26. doi: 10.1103/PhysRevC.40.22 [21] Nakao N, Kurosawa T, Nakamura T, et al. Development of a quasi-monoenergetic neutron field and measurements of the response function of an organic liquid scintillator for the neutron energy range from 66 to 206 MeV[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1): 176-180. [22] Baba M, Okamura H, Hagiwara M, et al. Installation and application of an intense 7Li(p, n) neutron source for 20-90 MeV region[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 13-17. [23] Mashnik S G, Chadwick M B, Hughes H G, et al. 7-Li(p, n) nuclear data library for incident proton energies to 150 MeV[R]. LA-UR-00-1067, 2000. [24] Koning A J, Hilaire S, Duijvestijn M C. TALYS: Comprehensive nuclear reaction modeling[C]//American Institute of Physics. 2005: 1154-1159. [25] Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments & Methods in Physics Research, 2003, 506(3): 250-303. [26] Ferrari A, Sala P R, Fasso A, et al. FLUKA: A multi-particle transport code[J]. Lancet, 2005, 7740: 44-45. [27] Prokofiev A, Chadwick M, Mashnik S, et al. Development and validation of the 7Li(p, n) nuclear data library and its application in monitoring of intermediate energy neutrons[J]. Journal of Nuclear Science & Technology, 2002, 39(s2): 112-115. [28] Hashimoto S, Iwamoto O, Iwamoto Y, et al. PHITS simulation of quasi-monoenergetic neutron sources from 7Li(p, n) reactions[J]. Energy Procedia, 2015, 71: 191-196. [29] Taddeucci T N, Goulding C A, Carey T A, et al. The (p, n) reaction as a probe of beta decay strength[J]. Nuclear Physics, 1987, 469(1): 125-172. [30] Uwamino Y, Soewarsono T S, Sugita H, et al. High-energy p-Li neutron field for activation experiment[J]. Nuclear Instruments & Methods in Physics Research A, 1997, 389(3): 463-473. [31] Ohlsen G G. Kinematic relations in reactions of the form A+B→C+D+E[J]. Nuclear Instruments & Methods, 1965, 37(2): 240-248. [32] Young P G, Arthur E D, Chadwick M B. Comprehensive nuclear model calculations: introduction to the theory and use of the GNASH code[J]. 1992. [33] Mashnik S G, Bull J S. MCNP6 simulation of quasi-monoenergetic 7Li(p, n) neutron sources below 150 MeV[J]. Nuclear Data Sheets, 2014, 118(1): 323-325. [34] Schuhmacher H, Brede H J, Dangendorf V, et al. Quasi-monoenergetic neutron beams with energies from 25 to 70 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1999, 421(1/2): 284-295. [35] Nakao N, Nakamura T, Baba M, et al. Measurements of response function of organic liquid scintillator for neutron energy range up to 135 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1995, 362(2/3): 454-465. [36] Meigo S. Measurements of the response function and the detection efficiency of an NE213 scintillator for neutrons between 20 and 65 MeV[J]. Nuclear Instruments & Methods in Physics Research, 1997, 401(2/3): 365-378. [37] Nakao N, Uwamino Y, Nakamura T, et al. Development of a quasi-monoenergetic neutron field using the 7Li(p, n)7Be reaction in the 70-210 MeV energy range at RIKEN[J]. Instruments & Methods in Physics Research, 1999, 420(1/2): 218-231. [38] Bedogni R, Domingo C, Amgarou K, et al. Spectrometry of 50 and 100 MeV quasi monochromatic neutron fields with extended range Bonner spheres[J]. Nuclear Instruments & Methods in Physics Research A, 2014, 746(9): 59-63. [39] Shikaze Y, Tanimura Y, Saegusa J, et al. Investigation of properties of the TIARA neutron beam facility of importance for calibration applications[J]. Radiation Protection Dosimetry, 2007, 126(1/4): 163-167. [40] 李春娟, 陈军, 王志强, 等. (20~400)MeV准单能中子参考辐射场的建立方法[J]. 宇航计测技术, 2013, 33(5): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htmLi Chunjuan, Chen Jun, Wang Zhiqiang, et al. Quasi-monoenergetic neutron reference fields with energies from 20 MeV to 400 MeV. Journal of Astronautic Metrology and Measurement, 2013, 33(5): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201305014.htm [41] Pomp S, Prokofiev A V, Blomgren J, et al. The new Uppsala neutron beam facility[C]//AIP Conference. 2005: 780-783. [42] Fang Y P, Oates A S. Thermal neutron-induced soft errors in advanced memory and logic devices[J]. IEEE Transactions on Device & Materials Reliability, 2014, 14(1): 583-586. [43] Prokofiev A V, Blomgren J, Platt S P, et al. ANITA—a new neutron facility for accelerated SEE testing at the Svedberg Laboratory[C]//IEEE International Reliability Physics Symposium. 2009: 929-935. [44] Dyer C S, Clucas S N, Sanderson C, et al. An experimental study of single-event effects induced in commercial SRAMs by neutrons and protons from thermal energies to 500 MeV[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2817-2824. [45] Johansson K, Dyreklev P, Granbom B, et al. Energy-resolved neutron SEU measurements from 22 to 160 MeV[J]. IEEE Transactions on Nuclear Science, 2002, 45(6): 2519-2526. [46] Lambert D, Baggio J, Hubert G, et al. Analysis of quasi-monoenergetic neutron and proton SEU cross sections for terrestrial applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(4): 1890-1896. [47] Granlund T, Granbom B, Olsson N. A comparative study between two neutron facilities regarding SEU[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 493-497. [48] Petersen E L, Pickel J C, Smith E C, et al. Geometrical factors in SEE rate calculations[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1888-1909. [49] Nolte R, Allie M S, Binns P J, et al. High-energy neutron reference fields for the calibration of detectors used in neutron spectrometry[J]. Nuclear Instruments & Methods in Physics Research A, 2002, 476(1/2): 369-373.