Research on improved harmonic detection method based on ip-iq theory
-
摘要: 有源电力滤波器(APF)是电力系统中实现电能质量管理的关键设备,谐波检测作为APF的关键技术之一,检测的精度和响应速度直接决定了APF的整体性能。介绍了传统的基于瞬时无功功率理论的ip-iq谐波电流检测算法; 针对其检测精度受锁相环输出相位误差影响,以及低通滤波器的存在限制了谐波检测系统的响应速度,提出了应用锁频环技术,产生与电网电压同频的单位正余弦信号的一种改进谐波检测算法; 并提出采用滑动平均滤波器(MAF)代替低通滤波器提高其响应速度以及改善谐波检测精度; 对改进的检测算法进行了理论分析,通过MATLAB进行仿真研究,理论分析和仿真结果都证明了该方法的有效性。Abstract: Active power filter (APF) is the key equipment to realize power quality management in power system. Harmonic detection is one of the key technologies of APF. The detection accuracy and response speed directly determine the overall performance of APF. In this paper, the traditional ip-iq harmonic current detection algorithm based on instantaneous reactive power theory is introduced; and the detection accuracy is affected by the phase error of the phase locked loop output and the response speed of the harmonic detection system is limited by the existence of low-pass filter. An improved harmonic detection algorithm is proposed by frequency-locked loop technology. The algorithm can generate unit sine and cosine signals with the same frequency of grid voltage, and moving average filter (MAF) is used instead of low-pass filter to improve its response speed and harmonic detection accuracy. The algorithm is analyzed theoretically and simulated by MATLAB. The theoretical analysis and simulation results prove the effectiveness of this method.
-
表 1 不同情况下两种方法谐波检测结果
Table 1. Harmonic detection results of two methods under different conditions
case harmonic detection method time required for stable result/s maximum fixed detection error after stabilization/A case 1 traditional ip-iq method 0.03 0.025 improved ip-iq method 0.01 0 case 2 traditional ip-iq method 0.03 0.03 improved ip-iq method 0.01 0 -
[1] 陈国柱, 吕征宇, 钱照明. 有源电力滤波器的一般原理及应用[J]. 中国电机工程学报, 2000, 20(9): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200009005.htmChen Guozhu, Lü Zhengyu, Qian Zhaoming. The general principle of active power filter and its application. Proceedings of the CSEE, 2000, 20(9): 17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200009005.htm [2] 刘进军, 刘波, 王兆安. 基于瞬时无功功率理论的串联混合型单相电力有源滤波器[J]. 中国电机工程学报, 1997, 17(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC199701010.htmLiu Jinjun, Liu Bo, Wang Zhaoan. Hybrid type series active power filter used in single-phase circuit based on instantaneous reactive power theory. Proceedings of the CSEE, 1997, 17(1): 37-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC199701010.htm [3] Wang Y F, Li Y W. An overview of grid fundamental and harmonic components detection techniques[C]//IEEE Energy Conversion Congress and Exposition. 2013: 5185-5192. [4] 帅定新, 谢运祥, 王晓刚. 电网谐波电流检测方法综述[J]. 电气传动, 2008, 38(8): 17-23. doi: 10.3969/j.issn.1001-2095.2008.08.004Shuai Dingxin, Xie Yunxiang, Wang Xiaogang, Review of harmonic current detecting methods in power system. Electric Drive, 2008, 38(8): 17-23 doi: 10.3969/j.issn.1001-2095.2008.08.004 [5] 房国志, 杨超, 赵洪. 基于FFT和小波包变换的电力系统谐波检测方法[J]. 电力系统保护与控制, 2012, 40(5): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201205015.htmFang Guozhi, Yang Chao, Zhao Hong. Detection of harmonic in power system based on FFT and wavelet packet. Power System Protection and Control, 2012, 40(5): 75-79 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201205015.htm [6] 王丽, 刘会金, 王陈. 瞬时无功功率理论的研究综述[J]. 高电压技术, 2006, 32(2): 98-100, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200602036.htmWang Li, Liu Huijin, Wang Chen. Summary of the instantaneous reactive power theory. High Voltage Engineering, 2006, 32(2): 98-100, 103 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200602036.htm [7] 吴雷, 郜亚洲. 基于自适应分析的瞬时无功功率谐波检测法[J]. 电力电子技术, 2015, 49(5): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDZ201505028.htmWu Lei, Gao Yazhou. Instantaneous reactive power for harmonic detection method based on adaptive analysis. Power Electronics, 2015, 49(5): 87-89 https://www.cnki.com.cn/Article/CJFDTOTAL-DLDZ201505028.htm [8] 唐蕾, 陈维荣. 瞬时无功功率理论坐标变换的推导及谐波电流检测原理分析[J]. 电网技术, 2008, 32(5): 66-69, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200805019.htmTang Lei, Chen Weirong. Deduction of coordinate transform for instantaneous reactive power theory and analysis on the principle of harmonic current detection method. Power System Technology, 2008, 32(5): 66-69, 86 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200805019.htm [9] 何英杰, 刘进军, 王兆安, 等. 一种基于瞬时无功功率理论的数字谐波检测[J]. 电工技术学报, 2010, 25(8): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201008032.htmHe Yingjie, Liu Jinjun, Wang Zhaoan, et al. A digital method for detecting harmonic currents based on instantaneous reactive power theory. Transactions of China Electrotechnical Society, 2010, 25(8): 185-192 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201008032.htm [10] 黄海宏, 江念涛, 毕楠夏, 等. 一种混合谐波检测法在APF中的应用[J]. 电子测量与仪器学报, 2016, 30(2): 297-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201602019.htmHuang Haihong, Jiang Niantao, Bi Nanxia, et al. Application of hybrid harmonic detection method in APF. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 297-303 https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201602019.htm [11] 杨欢, 赵荣祥, 程方斌. 无锁相环同步坐标变换检测法的硬件延时补偿[J]. 中国电机工程学报, 2008, 28(27): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200827014.htmYang Huan, Zhao Rongxiang, Cheng Fangbin. Delay compensation for harmonics detection based on synchronous reference frame without phase lock loop. Proceedings of the CSEE, 2008, 28(27): 78-83 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200827014.htm [12] 雷芸, 肖岚, 郑昕昕. 不理想电网下基于二阶广义积分的锁频环[J]. 电力电子技术, 2016, 50(8): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DLDZ201608027.htmLei Yun, Xiao Lan, Zheng Xinxin. A frequency-locked loop technology based on second order generalized integrator under non-ideal voltage conditions. Power Electronics, 2016, 50(8): 89-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLDZ201608027.htm [13] Wang J Y, Liang J, Gao F, et al. A method to improve the dynamic performance of moving average filter-based PLL[J]. IEEE Trans Power Electronics, 2015, 30(10): 5978-5990. [14] Golestan S, Guerrero J M, Abusorrah A. MAF-PLL with phase-lead compensator[J]. IEEE Trans Industrial Electronics, 2014, 62(6): 3691-3695.