留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种220 GHz分布作用速调管的高频系统模拟

王自成 曲兆伟 尚新文 曹林林 唐伯俊 肖刘

王自成, 曲兆伟, 尚新文, 等. 一种220 GHz分布作用速调管的高频系统模拟[J]. 强激光与粒子束, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312
引用本文: 王自成, 曲兆伟, 尚新文, 等. 一种220 GHz分布作用速调管的高频系统模拟[J]. 强激光与粒子束, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312
Wang Zicheng, Qu Zhaowei, Shang Xinwen, et al. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312
Citation: Wang Zicheng, Qu Zhaowei, Shang Xinwen, et al. RF system of a 220 GHz extended interaction klystron[J]. High Power Laser and Particle Beams, 2019, 31: 083101. doi: 10.11884/HPLPB201931.180312

一种220 GHz分布作用速调管的高频系统模拟

doi: 10.11884/HPLPB201931.180312
基金项目: 

国家自然科学基金项目 61172016

北京市自然科学基金重点项目 201511232037

详细信息
    作者简介:

    王自成(1966—), 男, 博士, 研究员, 从事短毫米波与太赫兹器件的研究, wzich_cn@sina.com

  • 中图分类号: TN128

RF system of a 220 GHz extended interaction klystron

  • 摘要: 对一种基于双排矩形波导慢波结构(SDRWS) 结构的3腔EIK进行了详细计算机模拟计算, 通过对基于SDRWS结构的EIK用输入输出腔的S11的模拟计算及对分布作用速调管用中间腔的本征频率的模拟计算, 初步确定了EIK用输入输出腔及中间腔的结构参数, 进而对EIK进行了PIC互作用模拟计算, 结果表明: 该EIK的3dB工作频带为219.5~220.5GHz, 3dB带宽为1GHz, 最大功率为456 W, 最大增益为40.06dB。在此基础上, 通过调整中间腔的波导头宽度以进行参差调谐, 用PIC互作用模型模拟计算研究了中间腔谐振频率对EIK整体性能的影响。结果表明, EIK的3dB工作频带主要由输入输出腔的通频带决定, 而中间腔的谐振频率也具有重要影响。当中间腔的谐振频率分别处于输入输出腔的通频带的低频端或高频端时, 可以使EIK的3dB工作频带向低频端或高频端得到一定程度展宽; 当中间腔的谐振频率高于输入输出腔的通频带的高频端时, EIK的增益在其3dB工作频带内较为平坦, EIK的输出信号在其3dB工作频带内比较稳定, 频谱的纯净程度较好。参差调谐的最终结果表明, 当中间腔的波导头宽度为0.747mm时, EIK获得了接近最优的性能, 3dB工作频带为219.5~220.0GHz, 3dB带宽扩展到1.2GHz, 最大功率为630W, 相应的最大电子效率为11.3%, 最大增益为47dB。
  • 图  1  220 GHz EIK的输入输出腔和中间腔的计算模型及相关计算结果

    Figure  1.  Model and calculated results of the input/output cavities and the intermediate cavity for a 220 GHz extended interaction klystron (EIK)

    图  2  3腔EIK的PIC计算模型和计算结果

    Figure  2.  PIC model for calculating the interaction of the 3-cavity EIK and calculated results

    图  3  3腔EIK的输出功率和增益与中间腔结构参数a依赖关系的PIC计算结果

    Figure  3.  Calculated output powers and gains of the 3-cavity EIK which depend on the size a in the intermediate cavity

    图  4  3腔EIK在中间腔的结构参数a取0.747 mm和0.750 mm时的归一化电压信号及其傅里叶变换

    Figure  4.  Normalized voltage v0 and FFT of v0 of the EIK when size a in the intermediate cavity is 0.747 mm or 0.750 mm

    图  5  腔EIK在中间腔的结构参数a取0.744 mm和0.753 mm时的归一化电压信号及其傅里叶变换

    Figure  5.  Normalized voltage v0 and FFT of v0 of the EIK when size a in the intermediate cavity is 0.744 mm or 0.753 mm

    表  1  初步选取的慢波结构参数

    Table  1.   Structural parameters of staggered double rectangular waveguide structure (SDRWS)

    a/mm b/mm p/mm t/mm r/mm
    0.744 0.32 0.33 0.11 0.09
    下载: 导出CSV

    表  2  中间腔本征频率与结构参数a的依赖关系

    Table  2.   Eigenmode frequencies of the intermediate cavity vs a

    a/mm f/GHz a/mm f/GHz a/mm f/GHz
    0.741 223.513 6 0.747 221.590 4 0.753 219.701 2
    0.744 222.547 7 0.750 220.641 7 0.756 218.769 1
    下载: 导出CSV

    表  3  中间腔的结构参数a对EIK性能的影响

    Table  3.   Effects on EIK performances of the size a in the intermediate cavity

    a/mm Pmax/W fPmax/GHz Gmax/dB fGmax/GHz w3 dB/GHz
    0.741 364.5 220.0 39.08 220.0 219.5~220.5
    0.744 456.0 220.0 40.06 220.0 219.5~220.5
    0.747 630.1 220.4 47.02 220.4 219.5~220.7
    0.750 423.2 220.0 51.31 219.6 219.2~220.3
    0.753 348.4 219.8 38.89 219.8 219.2~220.1
    0.756 188.1 219.8 36.20 219.8 219.2~220.0
    下载: 导出CSV

    表  4  中间腔在具有电子注条件下的谐振频率与其结构参数a的依赖关系

    Table  4.   Resonant frequency of the intermediate cavity with beam changes with a

    a/mm f/GHz a/mm f/GHz a/mm f/GHz
    0.741 222.513 6 0.747 220.59 0.753 218.701 2
    0.744 221.547 7 0.750 219.69 0.756 217.769 1
    下载: 导出CSV
  • [1] John H B, Richard J D, Colin D J, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [2] Albert R, Dave B, Mark H, et al. Sub-millimeter waves from a compact, low voltage extended interaction klystron[C]//Proc of IRMMW-THz. 2007: 1-3.
    [3] Mark H, Albert R, Peter H, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2008: 297.
    [4] Peter H, Albert R, Richard D, et al. Compact sources of high RF power for DNP applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 221-222.
    [5] Albert R, Mark H, Peter H, et al. Development of sub-millimeter high power compact EIKs for DNP and radar applications[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID62.
    [6] Richard D, Albert R, Peter H, et al. Design and fabrication of terahertz extended interaction klystrons[C]//Proc of IRMMW-THz. 2010: 1-3.
    [7] Richard D, Albert R, Peter H, et al. Fabrication techniques for a THz EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2010: 181-182.
    [8] 吴振华, 张开春, 刘盛纲. 扩展互作用谐振腔的模拟分析[J]. 强激光与粒子束, 2007, 19(3): 483-486. http://www.hplpb.com.cn/article/id/3083

    Wu Zhenhua, Zhang Kaichun, Liu Shenggang. Simulation of extended interaction oscillator. High Power Laser and Particle Beams, 2007, 19(3): 483-486 http://www.hplpb.com.cn/article/id/3083
    [9] Zhang Kaichun, Wu Zhenhua, Liu Shenggang. Study of an extended interaction oscillator with a rectangular reentrance coupled-cavity in Terahertz region[J]. J Infrared Milli Terahz Waves, 2009, 30: 308-318.
    [10] Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0240.
    [11] Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//Proc of IEEE International Vacuum Electronics Conference. 2015: si0369.
    [12] Gao Dongping, Zhang Zhaochuan, Ding Yaogen, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 355-356.
    [13] Chen Shuyuan, Ran Cunjun, Wang Yong. Equivalent circuit of multi-gap output cavity for sheet beam EIK[C]//Proc of IEEE International Vacuum Electronics Conference. 2014: 347-348.
    [14] Qu Zhaowei, Zhang Zhiqiang, Ding Yaogen, et al. Research progress of a W-band 100-watts extended interaction oscillator[C]//Proc of IEEE International Vacuum Electronics Conference. 2017: ID94.
    [15] 王自成, 唐伯俊, 谢文球, 等. 0.22 THz高效率行波管的互作用计算[J]. 强激光与粒子束, 2016, 28: 023101. doi: 10.11884/HPLPB201628.023101

    Wang Zicheng, Tang Bojun, Xie Wenqiu, et al. Calculation of interaction in 0.22 THz high efficiency traveling wave tube. High Power Laser and Particle Beams, 2016, 28: 023101 doi: 10.11884/HPLPB201628.023101
    [16] 刘青伦, 王自成, 刘濮鲲, 等. 基于场匹配法的双排矩形栅慢波结构高频特性研究[J]. 物理学报, 2012, 61: 244102. doi: 10.7498/aps.61.244102

    Liu Qinglun, Wang Zicheng, Liu Pukun, et al. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61: 244102 doi: 10.7498/aps.61.244102
    [17] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形波导慢波结构W波段宽频带行波管模拟研究[J]. 物理学报, 2012, 61: 124101. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm

    Liu Qinglun, Wang Zicheng, Liu Pukun. Simulation studies on W-band traveling-wave tube with double rectangular comb slow-wave structure. Acta Physica Sinica, 2012, 61: 124101 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212025.htm
    [18] 谢文球, 王自成, 罗积润, 等. 基于开槽单矩形栅和圆形电子注的W波段返波振荡器[J]. 物理学报, 2013, 62: 158503. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm

    Xie Wenqiu, Wang Zicheng, Luo Jirun, et al. Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam. Acta Physica Sinica, 2013, 62: 158503 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201315074.htm
    [19] Liu Qinglun, Wang Zicheng, Liu Pukun, et al. A THz backward-wave oscillator based on a double-grating rectangular waveguide[J]. IEEE Transactions on Electron Devices, 2013, 60(4): 1463-1468.
    [20] 徐翱, 胡林林, 阎磊, 等. 0.22 THz折叠波导行波管部件设计与加工[J]. 强激光与粒子束, 2012, 24(9): 2135-2140. doi: 10.3788/HPLPB20122409.2135

    Xu Ao, Hu Linlin, Yan Lei, et al. Design and machining of components of 0.22 THz folded waveguide traveling wave tube. High Power Laser and Particle Beams, 2012, 24(9): 2135-2140 doi: 10.3788/HPLPB20122409.2135
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  213
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-10
  • 修回日期:  2019-03-12
  • 刊出日期:  2019-08-15

目录

    /

    返回文章
    返回