留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双谐振拓扑高压脉冲电容器充电电源

刘劲东 何大勇 杨兴旺 王勇

卢晶, 茆华风, 傅鹏, 等. 静止无功补偿器和发射器在电弧炉动态无功补偿系统中的应用[J]. 强激光与粒子束, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349
引用本文: 刘劲东, 何大勇, 杨兴旺, 等. 双谐振拓扑高压脉冲电容器充电电源[J]. 强激光与粒子束, 2019, 31: 040021. doi: 10.11884/HPLPB201931.180314
Lu Jing, Mao Huafeng, Fu Peng, et al. Application of static var compensation and static var generator in dynamic reactive power compensation system of electric arc furnace[J]. High Power Laser and Particle Beams, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349
Citation: Liu Jingdong, He Dayong, Yang Xingwang, et al. High voltage pulse capacitor charging power supply based on double resonant topology[J]. High Power Laser and Particle Beams, 2019, 31: 040021. doi: 10.11884/HPLPB201931.180314

双谐振拓扑高压脉冲电容器充电电源

doi: 10.11884/HPLPB201931.180314
基金项目: 

国家自然科学基金项目 11675174

详细信息
    作者简介:

    刘劲东(1987—),男,博士研究生,从事电力电子及控制、加速器技术方向的研究;liujd@ihep.ac.cn

  • 中图分类号: TM910.6

High voltage pulse capacitor charging power supply based on double resonant topology

  • 摘要: 脉冲电容的充电电源是脉冲功率技术中的关键设备,为研究更高精度的高压脉冲电容充电电源,基于一种较为新颖的双谐振拓扑结构,通过推导传递函数,分析了其电压和电流传输特性。根据双谐振电路存在两个谐振点的特性,提出基于双谐振变换器的充电电源充电方式,即充电阶段采用串联谐振工作模式,到高压保持阶段通过频率调制降低开关频率至接近第二谐振点,实现对脉冲电容自放电压降的动态补偿,从而保证高压充电电源充电精度的同时,极大地提高脉冲电容的高压稳定度。为验证所提出方式的可行性,基于Matlab/simulink搭建仿真模型,分别对串联谐振全桥变换器和双谐振全桥变换器两种拓扑结构进行仿真,实验结果验证了所提出双谐振拓扑的频率调制方式的可行性。
  • 静止无功补偿器(SVC)相对于机械投切电容器组式的无功补偿装备,实现了无功功率精确、平滑补偿,是目前较为先进实用的无功补偿装置,已经得到了广泛应用。另外,SVC装置具有良好的分相补偿能力,对于电弧炉工作中造成的三相电压、电流不平衡有着独特的治理效果; 且晶闸管比全控型半导体开关器件造价低,有着更高的额定电压电流参数,适合拓展于高压、大容量场合。静止无功发生器(SVG)有着更快的响应时间,且可以不借助于无源支路,灵活的产生容性或感性无功功率进行调节。虽受限于目前全控型开关器件的电压容量及经济成本,然而在已经装设了SVC装置的工业现场,不改动已有的无源滤波支路,使用SVG配合SVC进行剩余无功功率补偿,具有非常大的应用拓展空间。本文针对广西某钢厂电弧炉现场,通过PSCAD/EMTDC对SVC和SVG联合方案进行了系统仿真验证[1-4]

    工业现场SVC有多种类型,主要有五种型式:磁阀控制电抗器型(MCR型)、可控硅控制空芯电抗器型(TCR型)、可控硅阀控制高阻抗变压器型(TCT型)、可控硅开关控制电容器型(TSC型)及自饱和电抗器型(SSR型)。基本原理及仿真主要围绕TCR型SVC。而本文所述的某钢厂电弧炉现场的负荷及SVC+SVG补偿装置的电压等级均为35 kV,并联于同一条母线下。

    TCR型SVC的基本原理是以母线三相电压矢量为基准,SVC装置发出与负荷基波无功电流幅值相等、相位相反的基波电流抵消负荷无功,而无源支路的容性无功容量与负荷最大感性无功基本持平,晶闸管阀控制单元根据负荷功率的变化调控电抗器感值灵活控制SVC需要补偿的无功功率[5],其基本结构如图 1所示。

    图  1  TCR型SVC结构图
    Figure  1.  TCR+FC type SVC

    根据斯坦门茨(Steinmetz, Charles Proteus)平衡化补偿原理[6],控制单元根据负荷无功计算出相应的电纳值,然后由电纳值推导出相应的触发角发送到晶闸管阀组。电纳值B与触发角α的关系式为

    B(α)=1ωL2π+sin2α2απ
    (1)

    式中:ω为角频率; L为电抗值。

    而斯坦门茨平衡化原理是由三相参考电压与负荷电流分别求出各相的电纳值。其基本关系式为

    Bab=(Re(˙Ubc˜˙Ial)+Re(˙Uca˜˙Ibl)Re(˙Uab˜˙Icl))3U2ab
    (2)
    Bbc=(Re(˙Uca˜˙Ibl)+Re(˙Uab˜˙Icl)Re(˙Ubc˜˙Ial))3U2bc
    (3)
    Bca=(Re(˙Uab˜˙Icl)+Re(˙Ubc˜˙Ial)Re(˙Uca˜˙Ibl))3U2ca
    (4)

    式中:˙Uab,˙Ubc,˙Uca为母线三相参考电压矢量; ˜˙Ial,˜˙Ib1,˜˙Icl是负荷三相相电流矢量。

    根据斯坦门茨原理公式(2),(3)和(4)求出的电纳B值,由式(1)查表,分别求出三相触发角,实现无功开环算法[7],其结构如图 2所示。

    图  2  SVC控制结构框图
    Figure  2.  SVC control block

    SVG,相较于基于半控型晶闸管控制的SVC装置,有着更快的响应时间。不同于根据斯坦门茨原理来计算电路的等值电纳,SVG装置使用脉冲调制技术来驱动开关管器件。而目前常用的控制技术主要有基于快速傅里叶变换的电流控制技术和基于瞬时无功功率理论的控制方法。由于基于傅里叶变换的控制技术在原理上至少存在一个周期的延时,因此在快速响应的补偿场合,大多使用基于无功功率理论的控制方法。图 3所示典型SVG逆变器的电路拓扑。

    图  3  典型SVG逆变器的电路拓扑
    Figure  3.  Typical topology of SVG

    求解上述电路的数学模型,并将态电路函数先进行PARK变换到d-q域,然后进行拉普拉斯变换,可有

    {(sL+R)id=usdurd+wLiq(sL+R)iq=usqurq+wLidudc=32sC(Sdid+Sqiq)
    (5)

    式中:idiqiaibic经过PARK变换在旋转p-q坐标系下的分量; SaSbSc为三相桥臂的开关状态,S=1表示该相桥臂上管开通,下管关断; S=0表示该相下管导通,上管关断,经过p-q变换后为SdSq

    针对参考电流,根据瞬时无功功率理论,如图 4所示,先经p-q变换求出其在旋转坐标系下的直流量,然后经过低通滤波器、p-q反变换得出其基波无功电流的参考量[8]

    图  4  基于p-q理论的谐波检测算法
    Figure  4.  Harmonic detection algorithm based on p-q theory

    根据瞬时无功功率理论得出参考电流量后,逆变器的控制器和实际控制框图如图 5所示。

    图  5  SVG逆变器的控制框图
    Figure  5.  Control block of SVG

    在工业现场,通常将SVG装置直接并联于负荷母线下进行无功补偿[9-10]。本文提出的方案将SVG与SVC并联然后并联于同一母线的负荷下。

    广西某钢厂110 kV高压变电站母线接入最小短路容量576 MV·A,安装50 MV·A主变压器一台,主变压器中压侧负荷主要为电弧炉和精炼炉负荷,低压侧主要为高压电动机负荷,目前场内35 kV母线侧安装TCR+FC型SVC,设置2次C型、3次、4次及5次单调谐滤波支路,总基波补偿容量25 Mvar(兆乏),系统主接线如下图 6所示。

    图  6  某钢厂电弧炉系统主接线图
    Figure  6.  Main topology of EAF system in a steel mill

    而该钢厂电弧炉经过改造后,发出的无功功率远超原始无功量,因此需重新计算,并于实际比对。无功需量计算应综合考虑初炼交流电弧炉(EAF)和精炼电弧炉(LF)的最大无功发生量和同时率,工程推荐值按照下式确定

    QD=k1QEAF,max+k2QL,F,max
    (6)

    式中:k1为EAF无功发生量的计算系数,工程推荐值为0.9~1.2;k2为LF无功发生量的计算系数,工程推荐值为0.4~0.6;QEAF, max为EAF最大无功发生量,单位为兆乏(Mvar); QLF, max为LF最大无功发生量,单位为兆乏(Mvar); QD为无功需量,单位为兆乏(Mvar)。

    根据计算,EAF,LF同时运行时35 kV所需最大无功发生量为35.25 Mvar。

    35 kV母线所带轧机总装机容量为11 MV·A,取功率因数为0.7,功率因数提高至0.92,按公式可知

    Q=P(1cosφ2111cosφ221)=4.57Mvar
    (7)

    式中:φ1为EAF的功率因数角; φ2为LF的功率因数角。因此,35 kV母线总无功补偿容量为39.82 Mvar,考虑一定的补偿裕度并结合电能质量测试报告,最终确定主变35 kV母线SVC装置的基波补偿容量为40 Mvar。针对原先25 Mvar的SVC系统,出现将近15 Mvar的无功缺口。

    SVC具备良好的分相补偿能力,能更好适应三相不平衡工况,但响应时间较长; 而SVG有着更快响应时间。结合二者优点,针对该钢厂电弧炉现场无功补偿实际,仍可利用原先的SVC装置,由SVG填补电弧炉改造产生的增多的无功功率。将SVG单元前置与SVC单元之前,两装置独立检测、独立工作。先投入SVC及SVG装置,稳定之后一定时间内投入负荷无功源,使用PSCAD/EMTDC进行系统仿真,电弧炉负荷利用无功波动源模拟,仿真步长设为156 μs。系统的仿真结构图如图 7所示,SVG,SVC和无功波动源都接于35 kV母线。

    图  7  系统仿真结构图
    Figure  7.  System simulation block

    SVC控制算法是根据式(1),(2),(3),(4)编写而成的C语言模块,然后由FORTRAN文件编写接口[11-12]。而SVG单元是由基本模块串联而成的三相桥[13],控制模块根据式(5)及图 4图 5所示的控制算法搭建。SVC及SVG控制模块如图 8图 9所示。

    图  8  SVC控制模块
    Figure  8.  SVC control block
    图  9  SVG控制模块
    Figure  9.  SVG control block

    无功波动源是最大0~40 Mvar可变的三相不平衡感性无功波动源,充分模拟该钢厂的电弧炉无功功率变化。图 10为投入无功源之后TCR环内电流,可以看出三相TCR环内电流并不同步,响应了相应的不平衡。

    图  10  TCR环内电流
    Figure  10.  Phase current of TCR

    图 11为无功源投入之后,SVG发出的无功功率。SVG发出最大近16 Mvar的容性无功功率,且感性无功值基本均小于0.3 Mvar,从另一个角度可以看出SVG响应速度优异。

    图  11  SVG发出的无功量
    Figure  11.  Reactive power generated by SVG

    为了考察SVG补充功率的真实效果,首先投入SVC,然后投入波动无功负荷,并不投入SVG,仿真结果如图 12所示。

    图  12  投入SVC,未投SVG负荷和母线的无功功率
    Figure  12.  Reactive power on load and grid without SVG

    图 12中,QL为负荷无功波动源无功功率,Q1_35 kV为35 kV母线处的无功功率,在4.5 s负荷产生较大的无功波动,而此时只投入SVC,母线处仍有将近18 Mvar的感性无功,这种现象在5.5 s处负荷波动中也有类似的情况,证明在进行电弧炉改造后,SVC系统并不能完全补偿负荷的无功功率; 而在5.3s处,母线有将近20Mvar的容性无功过冲,对比图 11可知,此处的容性无功冲击在SVG并没有呈现,且不是负荷造成,因此是由于SVC不能及时响应造成的,也说明SVC较SVG响应较慢[14-15]

    进一步将SVC和SVG联合注入后,如图 13所示。与图 12相比,在4.5 s和5.5 s处母线的无功缺口功率基本得到了抑制,结合图 11,SVG起到了快速抑制剩余无功的作用。

    图  13  负荷与母线的无功功率
    Figure  13.  Reactive power on load and grid with SVG and SVC

    电弧炉现场无功补偿系统进行SVC和SVG联合应用探索,需要明确两种装置各自的功能空间,即以TCR配套FC为无功功率补偿主体,并特别针对不平衡、负序等工况; 而SVG以其优良的更快速的响应性能,承担剩余无功功率抑制的任务。在这种分工前提下,参考补偿点位置至关重要,本文提出的方案SVC装置是无法捕捉到SVG功率补偿信息,即SVG参考位置在SVC上端,进行剩余无功功率补偿。但在实际中,SVC和SVG不可能同时响应,存在一定延时,因此对于容量有限的SVG,必须做前置限幅来防止过容量补偿指令带来的系统故障保护。处理完善参考点之后进行了PACAD/EMTDC系统仿真,从仿真结果来看,SVC和SVG联合应用可以起到预定的功率补偿效果,为其向广西电弧炉现场应用提供了理论和仿真级参考。

  • 图  1  双谐振变换器拓扑

    Figure  1.  Double resonant converter topology

    图  2  LC串联谐振变换器断续工作时主要波形

    Figure  2.  Main waveform of LC series resonant converter on DCM

    图  3  串联谐振与双谐振的电压传输特

    Figure  3.  Voltage transmission characteristics of series resonance and double resonance

    图  4  串联谐振与双谐振电流传输特性曲线

    Figure  4.  Current transmission characteristics of series resonance and double resonance

    图  5  双谐振电路的仿真模型

    Figure  5.  Simulation model of double resonant circuit

    图  6  串联谐振变换器的谐振电流/电压/驱动波形

    Figure  6.  Resonant current/voltage/drive waveform of a series resonant converter

    图  7  双谐振变换器充电高压储能电容电压波形/局部电压放大图

    Figure  7.  Double resonant converter charging voltage waveform and its local amplification

    图  8  双谐振电路充电及保持工作参数响应(驱动/谐振电流/电容电压/充电电压)

    Figure  8.  the main waveform for double resonant circuit charging and maintaining operating (drive / resonant current / capacitor voltage / charging voltage)

    图  9  双谐振电路充电/保持阶段的谐振电流/电压/驱动波形

    Figure  9.  The main waveform of resonant current / voltage / switch drive waveform

  • [1] 苏建仓, 王利民, 丁永忠, 等. 串联谐振充电电源分析及设计[J]. 强激光与粒子束, 2004, 16(12): 1611-1614. http://www.hplpb.com.cn/article/id/547

    Su Jiancang, Wang Limin, Ding Yongzhong, et al. Analysis and design of series resonant charging power supply. High Power Laser and Particle Beams, 2004, 16(12): 1611-1614 http://www.hplpb.com.cn/article/id/547
    [2] 樊生文, 蔡斌峰, 王泽庭. 基于串联谐振的电子束焊机灯丝电源的研究[J]. 电源技术, 2016, 40(5): 1113-1115. doi: 10.3969/j.issn.1002-087X.2016.05.052

    Fan Shengwen, Cai Binfeng, Wang Zeting. Research on series resonant electron beam welding filament power supply. Chinese Journal of Power Sources, 2016, 40(5): 1113-1115 doi: 10.3969/j.issn.1002-087X.2016.05.052
    [3] 黄新波, 刘斌, 张周熊, 等. 调频式串联谐振试验电源数字控制器设计[J]. 电力自动化设备, 2016, 36(7): 138-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201607021.htm

    Huang Xinbo, Liu Bin, Zhang Zhouxiong, et al. Design of digital controller for frequency-tuned series resonance power source. Electric Power Automation Equipment, 2016, 36(7): 138-155 https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201607021.htm
    [4] 钟和清, 徐至新, 邹云屏, 等. 寄生电容对串联谐振电容器充电电源特性的影响[J]. 中国电机工程学报, 2015, 25(10): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200510007.htm

    Zhong Heqing, Xu Zhixin, Zou Yunping, et al. Effects of parasitical capacitors on charging characteristic of series resonant CCPS. Proceedings of the CSEE, 2015, 25(10): 40-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200510007.htm
    [5] 廖永福, 林磊, 李傲, 等. 移相串联谐振高压电容器充电电源谐振参数设计方法及其电流控制策略[J]. 电工技术学报, 2016, 31(16): 83-92. doi: 10.3969/j.issn.1000-6753.2016.16.011

    Liao Yongfu, Lin Lei, Li Ao, et al. Resonant parameters design method and current control strategy of phase-shifted series resonant high-voltage capacitor charging power supply. Transactions of China Electrotechnical Society, 2016, 31(16): 83-92 doi: 10.3969/j.issn.1000-6753.2016.16.011
    [6] 甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30: 065003. doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [7] 刘坤, 付荣耀, 高迎慧, 等. 高压重频充电电源控制系统的设计[J]. 强激光与粒子束, 2016, 28: 045001. doi: 10.11884/HPLPB201628.125001

    Liu Kun, Fu Rongyao, Gao Yinghui, et al. Design of control system of high voltage repetition frequency charging power supply. High Power Laser and Particle Beams, 2016, 28: 045001 doi: 10.11884/HPLPB201628.125001
    [8] 李伟, 刘庆想, 张政权. 恒功率输入恒流输出的电容器充电电源[J]. 强激光与粒子束, 2016, 28: 075003. doi: 10.11884/HPLPB201628.075003

    Li Wei, Liu Qingxiang, Zhang Zhengquan. Capacitor charging power supply with constant power input and constant current output. High Power Laser and Particle Beams, 2016, 28: 075003 doi: 10.11884/HPLPB201628.075003
    [9] 刘福才, 金书辉, 赵晓娟. LC串联谐振和LCC串并联谐振在高压脉冲电容充电电源中的应用比较[J]. 高电压技术, 2012, 38(12): 3347-3356. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201212038.htm

    Liu Fucai, Jin Shuhui, Zhao Xiaojuan. Comparison of LC series resonant and LCC series-parallel resonant in high-voltage pulse capacitor charging power supply application. High Voltage Engineering, 2012, 38(12): 3347-3356 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201212038.htm
    [10] Debache1 W, Teboul M. Compact high voltage high power capacitor charger[C]//2012 IEEE International Power Modulator and High Voltage Conference. 2012: 631-632.
    [11] Pavlov G, Obrubov A, Vinnichenko I. The linearized dynamic model of the series resonant converter for small signals[C]//2016 2nd International Conference on Intelligent Energy and Power Systems. 2016: 1-5.
    [12] Carastro F, Clare J, Goodman A, et al. A 100kV switch mode series resonant power supply for industrial electrostatic precipitators[C]//2010 IEEE International Power Modulator and High Voltage Conference. 2010: 485-488.
  • 期刊类型引用(4)

    1. 黄港,王祖军,吕伟,聂栩,赖善坤,晏石兴,王敏文,卓鑫,于俊英,王忠明. 不同能量质子辐照诱发CCD图像传感器性能退化实验与分析. 光学学报. 2023(11): 201-208 . 百度学术
    2. 王兴鸿,王祖军,蔡星会,尹利元,唐宁,晏石兴,李传洲. 光电半导体材料辐照诱发微观缺陷的演化特性研究. 半导体光电. 2023(06): 869-875 . 百度学术
    3. 谭群,范杰清,赵强,张芳,李尧,郝建红,董志伟. CCD电子辐照效应三维蒙特卡罗模拟研究. 强激光与粒子束. 2022(04): 115-120 . 本站查看
    4. 丁曼. γ射线作用下氧化铪基MOS结构总剂量效应研究. 强激光与粒子束. 2019(06): 118-122 . 本站查看

    其他类型引用(2)

  • 加载中
图(9)
计量
  • 文章访问数:  2354
  • HTML全文浏览量:  594
  • PDF下载量:  280
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-01-21
  • 刊出日期:  2019-04-15

目录

/

返回文章
返回