留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一阶不连续光学元件MRF流体动力学分析方法

杨航 刘小雍 马登秋 张云飞 黄文 何建国

杨航, 刘小雍, 马登秋, 等. 一阶不连续光学元件MRF流体动力学分析方法[J]. 强激光与粒子束, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340
引用本文: 杨航, 刘小雍, 马登秋, 等. 一阶不连续光学元件MRF流体动力学分析方法[J]. 强激光与粒子束, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340
Yang Hang, Liu Xiaoyong, Ma Dengqiu, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340
Citation: Yang Hang, Liu Xiaoyong, Ma Dengqiu, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31: 022001. doi: 10.11884/HPLPB201931.180340

一阶不连续光学元件MRF流体动力学分析方法

doi: 10.11884/HPLPB201931.180340
基金项目: 

贵州省科技计划项目 黔科合LH字[2017]7081

贵州省科技计划项目 黔科合基础[2018]1179

贵州省教育厅青年科技人才成长项目 黔教合KY字[2017]249

贵州省教育厅青年科技人才成长项目 黔教合KY字[2018]319

贵州省教育厅青年科技人才成长项目 黔教合KY字[2016]254

教育部重点实验室开放基金课题项目 黔教合KY字[2017]385

详细信息
    作者简介:

    杨航(1989-),男,讲师,主要从事超精密加工装备技术与工艺理论研究;yhangde@mail.dlut.edu.cn

  • 中图分类号: TH164

Fluid dynamics analysis method for MRF of first order discontinuous optical elements

  • 摘要: 一阶不连续光学元件的磁流变抛光问题是制约我国高精高效光学制造领域发展的难题之一,其涉及锥形、矩形等几何形貌元件的光学元件加工问题以及常见光学元件的边缘效应控制问题。提出了基于一阶不连续光学元件的磁流变抛光流体动力学方法,建立了该类元件抛光区域流体动力分析的理论方法和数值手段。首先,对磁流变抛光工况下的流场进行了合理假设,其次,从微元流体动力方程出发,建立了适用于一阶不连续面形的流场分析方法,最后,基于有限差分法和数值迭代方法建立了流场控制方程的数值计算方法。通过对切入距离为1~18 mm的抛光过程进行数值仿真,发现该方法所获取的一阶不连续面形的压力分布形态是正确的,产生的不连续压降与实验观测一致。
  • 图  1  磁流变抛光原理与典型设备示意图

    Figure  1.  Schematic diagram of magnetorheological finishing principle and typical equipment

    图  2  光学镜面磁流变抛光中常见的一阶不连续曲面示意

    Figure  2.  Schematic diagram of the first order discontinuous surfaces commonly seen in magnetorheological finishing of optical mirrors

    图  3  一阶不连续面形磁流变抛光边缘缺陷干涉仪测量结果

    Figure  3.  Interferometeric measurement results of MRF edge defect of first-order discontinuous part

    图  4  磁流变抛光区域工况及参数定义示意图

    Figure  4.  Schematic diagram of working conditions and parameter definitions in MRF

    图  5  磁流变抛光区域流场微元体受力示意图

    Figure  5.  Force diagram of flow field elements in magnetorheological finishing area

    图  6  磁流变抛光区域流场网络分布关系

    Figure  6.  Distribution of flow field network in magnetorheological finishing region

    图  7  切入距离为1~18 mm时磁流变抛光压力场计算结果

    Figure  7.  Calculation results of MRF pressure field when the cutting distance is 1~18 mm

    图  8  切入距离为17 mm时磁流变抛光压力场三维图

    Figure  8.  Three-dimensional diagram of MRF pressure field when the cutting distance is 17 mm

    图  9  实验获取的切入距离为1~18 mm的抛光斑

    Figure  9.  Polishing spots with a cutting distance of 1~18 mm

  • [1] Harris D. History of magnetorheological finishing[C]//Proc of SPIE. 2011: 80160N.
    [2] 杨力. 先进光学制造技术[M]. 北京: 科学出版社, 2001.

    Yang Li. Advanced optical manufacturing technology. Beijing: Science Press, 2001
    [3] Tricard M, Dumas P, Forbes G. Subaperture approaches for asphere polishing and metrology[C]//Proc of SPIE. 2005, 5638: 284-299.
    [4] 彭小强. 确定性磁流变抛光的关键技术研究[D]. 长沙: 国防科学技术大学, 2004.

    Peng Xiaoqiang. Research on the key technology of deterministic magnetorheological polishing. Changsha: National University of Defense Technology, 2004
    [5] Beier M, Scheiding S, Gebhardt A, et al. Fabrication of high precision metallic freeform mirrors with Magnetorheological Finishing(MRF)[C]//Proc of SPIE. 2013: 88840S.
    [6] Schinhaerl M, Raschera R, Stampb R, et al. Filter algorithm for influence functions in the computer controlled polishing of high-quality optical lenses[J]. International Journal of Machine Tools & Manufacture, 2006, 47: 107-111.
    [7] 戴一帆. 大中型光学非球面镜制造与测量新技术[M]. 北京: 国防工业出版社, 2011.

    Dai Yifan. New technology for manufacturing and measuring large and medium-sized optical aspherical mirrors. Beijing: National Defense Industry Press, 2011
    [8] 罗勇. 二次非球面镜参数求解模型及求解算法研究[J]. 科学技术与工程, 2010, 10(36): 8968-8971. doi: 10.3969/j.issn.1671-1815.2010.36.006

    Luo Yong. Research on solving model and algorithm of parameters of quadratic aspherical mirror. Science Technology and Engineering, 2010, 10(36): 8968-8971 doi: 10.3969/j.issn.1671-1815.2010.36.006
    [9] 宋辞. 离轴非球面光学零件磁流变抛光关键技术研究[D]. 长沙: 国防科学技术大学, 2012.

    Song Ci. Research on the key technology of magnetorheological polishing for off-axis aspheric optical parts. Changsha: National University of Defense Technology, 2012
    [10] 刘振宇, 罗霄, 邓伟杰, 等. 大口径非球面的组合加工[J]. 光学精密工程, 2013, 21(11): 2791-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201311009.htm

    Liu Zhenyu, Luo Xiao, Deng Weijie, et al. Combined machining of large diameter aspheric surface. Optical Precision Engineering, 2013, 21(11): 2791-2797 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201311009.htm
    [11] Johns M. The Giant Magellan Telescope(GMT)[C]//Proc of SPIE. 2006: 77334Z.
    [12] 李圣怡, 彭小强. 光学零件可控柔体制造的理论基础与方法[J]. 机械工程学报, 2013, 49(17): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201317001.htm
    [13] Waluschka E. Cylindrical optic figuring dwell time optimization[C]//Proc of SPIE. 2000, 4318: 25-32.
    [14] Tuell M T. Novel tooling for production of aspheric surfaces[D]. Tucson: University of Arizona, 2002.
    [15] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    Pan Junhua. Design, processing and testing of optical aspheric surface. Suzhou: Soochow University Press, 2004
    [16] Dumas P, Hall C, Hallock B, et al. Complete sub-aperture pre-polishing & finishing solution to improve speed and determinism in asphere manufacture[C]//Proc of SPIE. 2007: 667111.
    [17] 袁巨龙, 吴喆, 吕冰海, 等. 非球面超精密抛光技术研究现状[J]. 机械工程学报, 2012, 48(23): 167-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223024.htm

    Yuan Julong, Wu Zhe, Lu Binghai, et al. Research status of aspheric surface ultra-precision polishing technology. Journal of Mechanical Engineering, 2012, 48(23): 167-177 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201223024.htm
    [18] Goodman D S. Handbook of optics[M]. New York: McGraw Hill, 1995.
    [19] Li Xiaoping, Zhao Yiwen, Lei Min. High precision and stability temperature control system for the immersion liquid in immersion lithography[J]. Flow Measurement and Instrumentation, 2016, 53: 317-325.
    [20] Alexander K, Giuseppe C, Carlos P, et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications. [J]. Optics Letters, 2016, 41(15): 3423-3426.
    [21] Saner C, Lu L, Zhang D, et al. Chemical approaches for nanoscale patterning based on particle lithography with proteins and organic thin films[J]. Nanotechnology Reviews, 2015, 4(2): 129-143.
    [22] 邹志同. EUV光刻技术与摩尔定律[J]. 集成电路应用, 2017(3): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDL201703013.htm

    Zou Zhitong. EUV lithography and Moore's law. Integrated Circuit Applications, 2017(3): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-JCDL201703013.htm
    [23] Plummer W T, Chin A K. Method and reflective apparatus for combining high-power laser beams: U.S. Patent 9496675[P]. 2016-11-15.
    [24] Simard L, Ellerbroek B, Bhatia R, et al. Thirty meter telescope science instruments: A status report[C]//Proc of SPIE. 2016: 9908V1.
    [25] Hu H, Dai Y F, Peng X Q, et al. Research on reducing the edge effect in magnetorheological finishing[J]. Applied Optics, 2011, 50(9): 1220-1226.
  • 加载中
图(9)
计量
  • 文章访问数:  1266
  • HTML全文浏览量:  384
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2019-01-18
  • 刊出日期:  2019-02-15

目录

    /

    返回文章
    返回