Numerical simulation of stress properties on high-yield fast-neutron-burst reactor in super-prompt-critical condition
-
摘要: 脉冲堆的性能主要受机械冲击引起的物理损伤的限制。高产额脉冲堆比CFBR-Ⅱ等金属铀脉冲堆追求更窄的脉冲宽度和更高的裂变产额,脉冲过程应力变化更加剧烈。为了获得高产额脉冲堆爆发脉冲过程中应力应变的分布,为新型脉冲堆设计和安全分析提供技术支持,基于圆柱型的铀钼合金快中子脉冲堆Godiva Ⅳ,以点堆方程以及MC(蒙特卡罗)方法对其中子产额以及功率分布进行了计算。并建立了快中子脉冲堆Godiva Ⅳ的三维模型,基于已知功率分布条件,利用有限元计算软件ANSYS Mechanical对其脉冲动态过程进行了瞬态的有限元计算,得到了Godiva Ⅳ圆柱型金属燃料在超临界脉冲爆发条件下的应力响应特性。Abstract: The performance of fast burst reactor (FBR) is mainly restricted by the physical damage caused by the mechanical shock. The smaller burst width and larger fission yield in high-yield FBRs indicate more significant stress variation. To obtain the temporal and spatial distributions of stress/strain of burst in the high-yield FBR and to provide technical support for the design and safety analysis of new-type FBRs, the neutronic calculation based on the point kinetic approximation and Monte Carlo method is first performed to obtain the temporal and spatial distributions of fission power in the cylindrical FBR Godiva IV, the three-dimensional thermoelastic behavior in the burst is then simulated by using the finite element method software ANSYS Mechanical. The dynamic response of stress in material component is obtained and analyzed. The results show that the cylindrical fuel will suffer a stress wave during the burst and the maximum stress occurs in the radial cracking of central fuel rings.
-
Key words:
- thermal shock stress /
- fast burst reactor /
- U-Mo /
- super-prompt-critical /
- cylindrical fuel component
-
表 1 U-1.5%Mo合金物性参数
Table 1. Parameters of the U-1.5%Mo
yield strength σ0.2/GPa ultimate tensile strength σu/GPa Poission’s ratio ν coefficient of thermal expansion/℃-1 heat capacity Cp/ (J·kg-1·℃-1) 0.65 0.95 0.37 1.48×10-5 140.3 bulk modulus K/GPa shear modulus G/GPa Young’s modulus E/GPa heat capacity Cp/ (J·kg-1·℃-1) density ρ/ (g·cm-3) 100.77 28.7 78.60 29.4 18.47 表 2 ANSYS计算结果与理论解对照表
Table 2. Theoretical solutions and ANSYS solutions
outer surface inner surface σr, p/MPa σr, b/MPa up/cm ub/cm σr, p/MPa σr, b/MPa up/cm ub/cm theoretical solutions 268.91 -264.08 0.060 2 0.029 2 557.81 -548.15 0.051 6 0.008 3 ANSYS (4-node tetrahedral element) 270.85 -265.01 0.060 3 0.029 2 556.84 -548.71 0.051 6 0.008 3 ANSYS (10-node tetrahedral element) 269.04 -263.88 0.060 3 0.029 3 555.49 -547.13 0.051 6 0.008 3 -
[1] 贺仁辅, 邓门才. 快中子临界装置和脉冲堆实验物理[M]. 北京: 国防工业出版社, 2012.He Renfu, Deng Mencai. Experiments and physics on fast-neutron critical facilities and pulsed reactors. Beijing: National Defense Industry Press, 2012 [2] Canaan R E. Dynamic response of a pulse-heated thick-walled hollow sphere: Validation of Code Numerics[R]. UCRL-ID-137326, 2000. [3] 梁文峰, 邱东, 杨成德, 等. 燃料元件在热冲击下基于ANSYS的动态响应仿真[J]. 科学技术与工程, 2014, 14(20): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201420012.htmLiang Wenfeng, Qiu Dong, Yang Chengde, et al. Dynamic response simulation of the fuel component under thermal shock with ANSYS. Science Technology and Engineering, 2014, 14(20): 51-55 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201420012.htm [4] Mosteller R D, Goda J M. Analysis of Godiva-Ⅳ delayed-critical and static super-prompt-critical conditions[R]. LA-UR-09-01007, 2009. [5] Kimpland R H. Preliminary results of Godiva-Ⅳ Prompt Burst Modeling[R]. LA-UR-96-1498, 1996. [6] Wimett T F. Dynamic and power prediction in fission bursts[J]. Nuclear Science and Engineering, 1992, 110: 209-236. doi: 10.13182/NSE90-149 [7] Hickman D P, Heinrichs D P, Hudson R. Dosimetry characterization of the Godiva reactor under burst conditions[R]. LLNL-TR-729408, 2017. [8] 高辉, 刘晓波, 范小强. 反应性动态加入对脉冲堆中子脉冲波形的影响[J]. 核动力工程, 2013, 34(2): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302015.htmGao Hui, Liu Xiaobo, Fan Xiaoqiang. Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor. Nuclear Power Engineering, 2013, 34(2): 68-71 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG201302015.htm [9] 李兵, 范小强, 邓门才. 快中子脉冲堆动力学特性研究[J]. 核电子学与探测技术, 2001, 21(4): 277-280. doi: 10.3969/j.issn.0258-0934.2001.04.012Li Bing, Fan Xiaoqiang, Deng Mencai. Dynamic character research of fast neutron burst reactor. Nuclear Electronics & Detection Technology. 2001, 21(4): 277-280 doi: 10.3969/j.issn.0258-0934.2001.04.012 [10] 邱东. 快中子脉冲反应堆脉冲爆发时堆体应力分布的数值模拟[J]. 核动力工程, 2004, 25(1): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200401017.htmQiu Dong. Numerical simulation of the stress distribution for fast burst reactor under pulsed operation. Nuclear Power Engineering, 2004, 25(1): 74-82 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG200401017.htm [11] Kozlov E A, Pankratov D G, Tarzhanov V I, et al. Spall strength characteristics of a U-1.5%Mo alloy during explosive loading at various intensities[J]. Russian Metallurgy, 2010, 10: 895-903.