留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静止无功补偿器和发射器在电弧炉动态无功补偿系统中的应用

卢晶 茆华风 傅鹏 李俊 沈显顺 吴亚楠

卢晶, 茆华风, 傅鹏, 等. 静止无功补偿器和发射器在电弧炉动态无功补偿系统中的应用[J]. 强激光与粒子束, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349
引用本文: 卢晶, 茆华风, 傅鹏, 等. 静止无功补偿器和发射器在电弧炉动态无功补偿系统中的应用[J]. 强激光与粒子束, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349
Lu Jing, Mao Huafeng, Fu Peng, et al. Application of static var compensation and static var generator in dynamic reactive power compensation system of electric arc furnace[J]. High Power Laser and Particle Beams, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349
Citation: Lu Jing, Mao Huafeng, Fu Peng, et al. Application of static var compensation and static var generator in dynamic reactive power compensation system of electric arc furnace[J]. High Power Laser and Particle Beams, 2019, 31: 056002. doi: 10.11884/HPLPB201931.180349

静止无功补偿器和发射器在电弧炉动态无功补偿系统中的应用

doi: 10.11884/HPLPB201931.180349
基金项目: 

国家自然科学基金项目 51707190

详细信息
    作者简介:

    卢晶(1989—),男,博士,助理研究员,主要从事无功补偿、有源滤波控制方面研究; lujing@ipp.ac.cn

    通讯作者:

    吴亚楠(1986—),男,博士,副研究员,主要从事大容量特种电源与电网兼容性研究; wyn@ipp.ac.cn

  • 中图分类号: TM712

Application of static var compensation and static var generator in dynamic reactive power compensation system of electric arc furnace

  • 摘要: 发展高效绿色电炉冶炼技术是淘汰落后产能、钢铁产业调整升级的重要举措。电弧炉作为核心生产设备,防止其生产运行中无功冲击造成的电压跌落至关重要。而目前单一的有源、无源补偿方式无法同时满足电弧炉负荷日益增长的大容量且快速响应的无功补偿需求。研究了静止无功补偿器(SVC)和静止无功发射器(SVG)相结合的混联补偿方式,分析了SVC在分相不平衡大容量补偿及SVG在无功快速响应方面中的特性,并针对某钢厂电弧炉工作运行情况,计算其无功需求,充分利用其原有的SVC装置,设计混联SVG方案来抵消剩余无功缺口,使用PSCAD/EMTDC进行了联合应用仿真,证实其理论有效性。
  • 图  1  TCR型SVC结构图

    Figure  1.  TCR+FC type SVC

    图  2  SVC控制结构框图

    Figure  2.  SVC control block

    图  3  典型SVG逆变器的电路拓扑

    Figure  3.  Typical topology of SVG

    图  4  基于p-q理论的谐波检测算法

    Figure  4.  Harmonic detection algorithm based on p-q theory

    图  5  SVG逆变器的控制框图

    Figure  5.  Control block of SVG

    图  6  某钢厂电弧炉系统主接线图

    Figure  6.  Main topology of EAF system in a steel mill

    图  7  系统仿真结构图

    Figure  7.  System simulation block

    图  8  SVC控制模块

    Figure  8.  SVC control block

    图  9  SVG控制模块

    Figure  9.  SVG control block

    图  10  TCR环内电流

    Figure  10.  Phase current of TCR

    图  11  SVG发出的无功量

    Figure  11.  Reactive power generated by SVG

    图  12  投入SVC,未投SVG负荷和母线的无功功率

    Figure  12.  Reactive power on load and grid without SVG

    图  13  负荷与母线的无功功率

    Figure  13.  Reactive power on load and grid with SVG and SVC

  • [1] 李思锐, 江秀龙, 马德武, 等. 我国电弧炉炼钢发展现状及前景[J]. 四川冶金, 2018, 40(2): 19-21, 42. doi: 10.3969/j.issn.1001-5108.2018.02.009

    Li Sirui, Jiang Xiulong, Ma Dewu, et al. The development and challenge of EAF. Sichuan Metallurgy, 2018, 40(2): 19-21, 42 doi: 10.3969/j.issn.1001-5108.2018.02.009
    [2] 郭宏图. SVG与SVC在煤矿供电系统应用比较[J]. 电子科技, 2010, 23(S1): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK2010S1003.htm

    Guo Hongtu. SVC and SVG comparison of power supply system in coal mine. Electronic Science and Technology, 2010, 23(S1): 10-12 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK2010S1003.htm
    [3] 王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 2010.

    Wang Zhaoan, Yang Jun, Liu Jinjun, et al. Harmonic suppression and reactive power compensation. Beijing: China Machine Press, 2010
    [4] 周潮, 邢文洋, 李宇龙. 电力系统负荷预测方法综述[J]. 电源学报, 2012(6): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB201206007.htm

    Zhou Chao, Xing Wenyang, Li Yulong. Summarization on load forecasting method of electrical power system. Journal of Power Supply, 2012(6): 32-39 https://www.cnki.com.cn/Article/CJFDTOTAL-DYXB201206007.htm
    [5] 刘华东, 张定华, 邓建华, 等. SVC在电弧炉治理中的应用研究[J]. 大功率变流技术, 2009(5): 51-56. doi: 10.3969/j.issn.1671-8410-B.2009.05.012

    Liu Huadong, Zhang Dinghua, Deng Jianhua, et al. Application Research of SVC for electric arc furnace governance high power converter technology. High Power Converter Technology, 2009(5): 51-56 doi: 10.3969/j.issn.1671-8410-B.2009.05.012
    [6] 孙聪, 王异凡, 陈国柱, 吴新科. 基于Steinmetz原理与瞬时无功理论的SVC装置防过补偿控制策略[J]. 机电工程, 2013, 30(10): 1246-1249, 1272.

    Sun Cong, Wang Yifan, Chen Guozhu, et al. Anti-overcompensation control strategy in SVC based on Steinmetz principle and instantaneous reactive power theory. Journal of Mechanical & Electrical Engineering, 2013, 30(10): 1246-1249, 1272
    [7] 杜亚鹏, 范兴明, 张鑫, 等. 基于PSCAD的TCR+FC型SVC控制策略研究[J]. 电焊机, 2012, 42(9): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201209010.htm

    Du Yapeng, Fan Xingming, Zhang Xin, et al. Research on control strategy for TCR-FC type SVC based on PSCAD. Electric Welding Machine, 2012, 42(9): 25-29 https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201209010.htm
    [8] 张俊敏, 田微. 基于瞬时无功功率理论谐波检测方法的研究[J]. 电力系统保护与控制, 2008(18): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200818014.htm

    Zhang Junmin, Tian Wei. Study on harmonic detection methods based on instantaneous reactive power theory. Power System Protection and Control, 2008(18): 33-36 https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200818014.htm
    [9] Li W, Zhao J, Chen W, et al. The 3-layer coordinated control of the hybrid operation of SVC and SVG[R]. IET Generation, Transmission & Distribution, 2016.
    [10] 许敏敏. 级联H桥SVG无功补偿控制策略研究[D]. 太原: 太原科技大学, 2016.

    Xu Minmin. Study on control strategy of cascade H-bridge SVG in reactive power compensation. Taiyuan: Taiyuan University of Science and Technology, 2016
    [11] 邹宁, 方存洋, 刘育鑫, 等. PSCAD/EMTDC-MATLAB联合仿真技术在SVC控制系统仿真建模中的应用[J]. 江苏电机工程, 2012, 31(5): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDJ201205017.htm

    Zou Ning, Fang Cunyang, Liu Yuxin, et al. Application of PSCAD / EMTDC-MATLAB co-simulation technology in SVC control system simulation modeling. Jiangsu Electrical Engineering, 2012, 31(5): 40-44 https://www.cnki.com.cn/Article/CJFDTOTAL-JSDJ201205017.htm
    [12] Pathak A K, Sharma M P, Gupta M. Modeling and simulation of SVC for reactive power control in high penetration wind power system[C]//12th IEEE India International Conference INDICON 2015 Electronics, Energy, Environment, Communications, Computer, Control(E3-C3). 2016.
    [13] Hu S G, Gao D Y, Wang S H, et al. Simulation study on three-phase three-wire system low voltage SVG in PSCAD[J]. Advanced Materials Research, 2014, 1049/1050: 703-707.
    [14] Wu Yanan, Xu Liuwei, Fu Peng, et al. Testing of SVC compensation and filtering performance with Tokamak PF converter[J]. Journal of Fusion Energy, 2014, 34(1): 84-92.
    [15] Luo R, He Y, Liu J. Research on the unbalanced compensation of delta-connected cascaded h-bridge multilevel SVG[J]. IEEE Trans Industrial Electronics, 2018, 65(11): 8667-8676.
  • 加载中
图(13)
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  341
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-02-20
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回