Electromagnetic interference effect of power supply in typical audio amplifier circuit
-
摘要: 选取一种典型的音频功率放大电路,采用直接功率注入法研究了音频功放电源的电磁干扰效应。分析了电路的电磁干扰耦合机理,设计了基于直接功率注入法的电源电磁干扰测试平台,测试得到0.1~1 GHz电磁干扰对音频放大电路直流电源的干扰效果数据,得出临界失真、典型失真和完全失真三种状态下的功率阈值与干扰频率规律曲线。结果表明:测试频段内,三种失真状态下的失真功率阈值随频率的变化关系一致,失真功率阈值相差约2 dBm。当注入干扰的频率较低时(100~300 MHz),失真功率阈值较高,且随频率增大近似以幂函数趋势下降;当注入干扰频率高于300 MHz时,失真功率阈值随频率增大呈减幅振荡趋势。Abstract: The direct power injection method was used to study the effect of electromagnetic interference coupling on the power supply of typical audio power amplifier circuits. The electromagnetic interference coupling characteristics of typical audio power amplifier circuits were analyzed. The electromagnetic interference test platform based on the direct power injection method was designed to test the electromagnetic interference effect on the DC power signal of the circuit in the range of 0.1-1 GHz. The power thresholds for the critical distortion, typical distortion and full distortion of the circuit and their laws with the interference frequency were obtained. The results show that in the test frequency band, the distortion power threshold has the same relationship with the frequency under the three distortion states, and the difference of distortion power threshold is about 2 dBm. When the injection interference frequency is lower (100-300 MHz), the distortion power threshold is higher, and decreases with the increase of the frequency in the trend of power function approximately. When the injection interference frequency is higher than 300 MHz, the distortion power threshold tends to damped oscillation with the increase of the frequency. The use of electromagnetic interference can affect the normal operation of audio electronic devices, which provides a new thought for the study on ultra-wide spectrum electromagnetic interference effects of audio integrated circuits.
-
表 1 公式中的系数及拟合精度
Table 1. Coefficient in formula and fitting accuracy
i ai bi ci R2 critical distortion 1 1.002×104 -1.778 4.391 0.7876 typical distortion 2 1.9×105 -2.279 6.785 0.8216 full distortion 3 5631 -1.54 8.612 0.7975 -
[1] 蒙林, 李天明, 李浩. 国外高功率微波发展综述[J]. 真空电子技术, 2015(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502002.htmMeng Lin, Li Tianming, Li Hao. Developments of high power microwave abroad. Vacuum Electronics, 2015(2): 8-12 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502002.htm [2] 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502001.htmQian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries. Vacuum Electronics, 2015(2): 2-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201502001.htm [3] 席晓文, 柴常春, 刘阳, 等. 外界条件在电磁脉冲对GaAs赝高电子迁移率晶体管损伤过程中的影响[J]. 物理学报, 2017, 66: 078401. doi: 10.7498/aps.66.078401Xi Xiaowen, Chai Changchun, Liu Yang, et al. Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse. Acta Physica Sinica, 2017, 66: 078401 doi: 10.7498/aps.66.078401 [4] 马振洋. 双极晶体管微波损伤效应与机理研究[D]. 西安: 西安电子科技大学, 2013.Ma Zhenyang. Research on the damage effect and mechanism of bipolar transistor caused by microwaves. Xi'an: Xidian University, 2013 [5] Zhou L, Zheng W S, Hua Y J, et al. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave(HPM) pulses[J]. IEEE Trans Electromagnetic Compatibility, 2017, 99: 1-8. [6] Zhou L, San Z W, Lin L, et al. Electro-thermal-stress interaction of GaN HEMT breakdown induced by high power microwave pulses[C]//IEEE Asia-Pacific International Symposium on Electromagnetic Compatibility. 2016: 642-644. [7] 程笑林. 场效应管瞬态电热特性的谱元法分析[D]. 南京: 南京理工大学, 2015.Cheng Xiaolin. Analysis of FET's transient electrothermal characteristics by spectral element method. Nanjing: Nanjing University of Science & Technology, 2015 [8] 陈杰, 杜正伟. CMOS反相器的电磁干扰频率效应[J]. 强激光与粒子束, 2012, 24(1): 147-151 http://www.hplpb.com.cn/article/id/5832Chen Jie, Du Zhengwei. Effect of electromagnetic interference frequency on CMOS inverters. High Power Laser and Particle Beams, 2012, 24(1): 147-151. http://www.hplpb.com.cn/article/id/5832 [9] Yi S, Du Z. The influence of microwave pulse width on the thermal burnout effect of an LNA constructed by a GaAs PHEMT[J]. Microelectronics Reliability, 2018, 85(1): 140-147. [10] 胡凯, 李天明, 汪海洋, 等. 多级PIN限幅器高功率微波效应研究[J]. 强激光与粒子束, 2014, 26: 063015. doi: 10.11884/HPLPB201426.063015Hu Kai, Li Tianming, Wang Hai, et al. High power microwave effect of multi-stage PIN limiter. High Power Laser and Particle Beams, 2014, 26: 063015 doi: 10.11884/HPLPB201426.063015 [11] Redouté J M, Steyaert M. EMC of analog integrated circuits[C]//Analog Circuits & Signal Processing. 2010. [12] Fiori F. EMI-induced distortion of baseband signals in current feedback instrumentation amplifiers[J]. IEEE Trans Electromagnetic Compatibility, 2018, 99: 1-8. [13] Fermi U, Fiumara A, Rossi G. An innovative mathematical model of RF-induced quiescent point shift in a BJT[J]. IEEE Trans Electromagnetic Compatibility, 1996, 38(3): 244-249. [14] Richardson RE. Quiescent operating point shift in bipolar transistors with AC excitation[J]. IEEE Journal of Solid-State Circuits, 1980, 14(6): 1087-1094. [15] Richardson R E. Modeling of low-level rectification RFI in bipolar circuitry[J]. IEEE Trans Electromagnetic Compatibility, 1979, 21(4): 307-311. [16] IEC 62132-4, IC's measurement of E/M immunity 150 kHz to 1 GHz—Part 4: Direct RF power injection method[S]. [17] 王长河. 高功率微波和电磁脉冲对半导体器件辐射损伤的研究[J]. 微纳电子技术, 1997, 34(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ199701002.htmWang Changhe. Study on the effect of HPM and EMP radiation damage on semiconductor devices. Micronanoelectronic Technology, 1997, 34(1): 9-16 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTQ199701002.htm [18] 刘波. 半导体器件的高功率微波毁伤阈值数值计算研究[D]. 成都: 电子科技大学, 2004: 19.Liu Bo. Numerical calculation of high power microwave damage threshold for semiconductor devices. Chengdu: University of Electronic Science and Technology of China, 2004: 19 期刊类型引用(5)
1. 姚凯强,苏宝鹏,李卓岱,刘国睿,李江坤,刘军涛,刘志毅. 宇宙射线缪子成像技术在中国的研究进展. 中国无机分析化学. 2024(06): 715-731 . 百度学术
2. 李笑梅,智宇,李沛玉,胡守扬,王义,刘树彬,李奇特,汤秀章,韩然,欧阳晓平,刘志毅,唐健,胡坤,王晓冬,文群刚,樊瑞睿,赵保真,赵永刚,韩冬,刘大铭,叶邦角,封常青,沈仲弢,潘子文,王宇,陈欣南,高春宇,李雨芃,周静,贾世海,宋金兴,孙鹏飞,赵明锐,吝守龙,邓桂华,卢志永,许天驹,庄晓,王浩桢,蒋涛,李志伟,李景太,冒鑫,刘军涛,李卓岱,刘国睿,罗旭佳,姚凯强,罗思远,罗凤姣,何列,肖万成,田宝贤,吕学升,沈彦,黄声慧,陈雷,靳尚泰,郭佳承. 缪子成像技术及其研究现状与发展趋势. 原子能科学技术. 2023(07): 1281-1311 . 百度学术
3. 熊凯,魏春岭,周鹏. 基于宇宙线缪子探测的水下定位方法研究. 战术导弹技术. 2023(04): 56-68 . 百度学术
4. 钱祎剑,张立军,陈灵新,王冠鹰. 宇宙射线缪子核材料快速检测算法研究. 原子能科学技术. 2021(12): 2339-2345 . 百度学术
5. Xing-Yu Pan,Yi-Fan Zheng,Zhi Zeng,Xue-Wu Wang,Jian-Ping Cheng. Experimental validation of material discrimination ability of muon scattering tomography at the TUMUTY facility. Nuclear Science and Techniques. 2019(08): 60-68 . 必应学术
其他类型引用(5)
-