留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行陶瓷棒介质阻挡放电分段模型等效参数预测

刘星亮 邱祁 王若宇 邓焰 何湘宁

刘星亮, 邱祁, 王若宇, 等. 平行陶瓷棒介质阻挡放电分段模型等效参数预测[J]. 强激光与粒子束, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385
引用本文: 刘星亮, 邱祁, 王若宇, 等. 平行陶瓷棒介质阻挡放电分段模型等效参数预测[J]. 强激光与粒子束, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385
Liu Xingliang, Qiu Qi, Wang Ruoyu, et al. Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods[J]. High Power Laser and Particle Beams, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385
Citation: Liu Xingliang, Qiu Qi, Wang Ruoyu, et al. Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods[J]. High Power Laser and Particle Beams, 2019, 31: 040007. doi: 10.11884/HPLPB201931.180385

平行陶瓷棒介质阻挡放电分段模型等效参数预测

doi: 10.11884/HPLPB201931.180385
详细信息
    作者简介:

    刘星亮(1990-), 男,博士,主要从事高频高压特种电源研究;Liuxingliang@zju.edu.cn

  • 中图分类号: TM46

Equivalent parameters prediction of dielectric barrier discharge piecewise model with parallel ceramic rods

  • 摘要: 为实现对介质阻挡放电负载模型等效参数的有效预测,引入放电区域面积作为中间变量。以平行陶瓷棒为负载,通过Maxwell有限元仿真得到恒压静电场下的负载等效电容与放电区域的对应关系。结合恒压静电场下的电场分布,提出了放电区域逐步扩张下的气隙首次击穿电压、负载外加电压峰值及气隙放电维持电压的预估方法。进而,根据李萨如图形法求得各个工作点的功率。至此,建立起了放电区域同各个等效参数间的量化关系,并实现了对参数的预测。最后,对气隙间距为1,3,4 mm的工况进行了实验验证。实验结果表明:气隙放电维持电压预测值在局部变化趋势上与实测值存在一定差异;放电功率、负载外加电压峰值预测结果与实测值较为吻合。
  • 图  1  负载等效模型及李萨如图

    Figure  1.  Load equivalent circuit and its Lissajous figures

    图  2  带负载的驱动源电路及DCM与CCM临界工作模式下的关键波形

    Figure  2.  Resonant converter with load and its key waveforms in the critical mode between DCM and CCM

    图  3  负载静电场分布及基于几何结构的参数等效方法示意图

    Figure  3.  Schematic diagram of electrostatic field distribution and equivalent parameter extraction methods based on geometric structure

    图  4  不同气隙间距下,放电阶段模型等效电容同放电区域的关系

    Figure  4.  Equivalent capacitances versus discharge area with different air gap distances

    图  5  放电延伸曲线上不同位置对应的均匀系数

    Figure  5.  Uniformity coefficient versus different position along the discharge expansion curve

    图  6  放电延伸曲线上不同位置对应的气隙电压占比

    Figure  6.  Air gap voltage versus applied voltage at different position

    图  7  放电区域扩张所需外加电压峰值的变化曲线

    Figure  7.  Relationship between applied voltage peak and the discharge area

    图  8  放电扩张到不同位置时的放电维持电压

    Figure  8.  Discharge maintaining voltage corresponding to different discharge area

    图  9  不同气隙间距下负载外加电压峰值、放电维持电压及放电功率的实验值同预测值比较

    Figure  9.  Experiment and prediction results of applied voltage peak value, gap discharge maintaining voltage, and discharge power with different air gap distances

    表  1  不放电阶段不同气隙间距下的的等效电容参数

    Table  1.   Equivalent capacitances during non-discharge stage with different air gap distances

    d/mm Cd-ch/pF Cg-ch/pF Cch/pF Cch-exp/pF
    1 120.06 53.79 37.15 36.27
    3 142.14 24.47 20.87 23.02
    4 148.43 20.30 17.86 21.62
    下载: 导出CSV
  • [1] 宋颖. 大气压非平衡等离子体在杀菌中的应用研究[D]. 大连: 大连理工大学, 2014.

    Song Ying. Inactivation applications of atmospheric pressure nonequilibrium plasmas. Dalian: Dalian University of Technology, 2014
    [2] Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. doi: 10.1023/A:1022470901385
    [3] 胡小吐. AC/DC流光放电等离子体烟气脱硫实验研究[D]. 北京: 北京交通大学, 2007.

    Hu Xiaotu. Experimental research of AC/DC streamer plasmas in flue gas desulfurization. Beijing: Beijing Jiaotong University, 2007
    [4] Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. Hoboken: John Wiley & Sons, 2005.
    [5] 郝世强. 介质阻挡放电的能量压缩机理、实现及优化[D]. 杭州: 浙江大学, 2016.

    Hao Shiqiang. Mechanism, implementation and optimization of dielectric barrier discharge energy compression. Hangzhou: Zhejiang University, 2016
    [6] Kinnares V, Hothongkham P. Circuit analysis and modeling of a phase-shifted pulsewidth modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1739-1752. doi: 10.1109/TPEL.2010.2042075
    [7] Eid A, Takashima K, Mizuno A. Experimental and simulation investigations of DBD plasma reactor at normal environmental conditions[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 4221-4227. doi: 10.1109/TIA.2014.2315496
    [8] Guo Tangtang, Liu Xingliang, Hao Shiqiang, et al. Prediction of equivalent electrical parameters of dielectric barrier discharge load using a neural network[J]. Plasma Science and Technology, 2015, 17(3): 196-201. doi: 10.1088/1009-0630/17/3/05
    [9] Alonso J M, Valdés M, Calleja A J, et al. High frequency testing and modeling of silent discharge ozone generators[J]. Ozone Science & Engineering, 2003, 25(5): 363-376.
    [10] 王静, 蔡忆昔, 王军, 等. 介质阻挡放电等效电容的测量与分析[J]. 高电压技术, 2008, 34(2): 264-266, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htm

    Wang Jing, Cai Yixi, Wang Jun, et al. Measurement and analysis of equivalent capacitance in dielectric barrier discharge. High Voltage Engineering, 2008, 34(2): 264-266, 308 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200802013.htm
    [11] 王辉, 方志, 邱毓昌, 等. 介质阻挡放电等效电容变化规律的研究[J]. 绝缘材料, 2005, 38(1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htm

    Wang Hui, Fang Zhi, Qiu Yuchang, et al. On the changing of equivalent capacitance in dielectric barrier discharge. Insulating Materials, 2005, 38(1): 37-40 https://www.cnki.com.cn/Article/CJFDTOTAL-JYCT200501012.htm
    [12] Xiao Dengming. Gas discharge and gas insulation[M]. Heidelberg: Springer-Verlag, 2016.
    [13] 张红. 高电压技术[M]. 北京: 中国电力出版社, 2009.

    Zhang Hong. High voltage technique. Beijing: China Electric Power Press, 2009
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  780
  • HTML全文浏览量:  284
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-02-22
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回