留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子成像暗场成像技术特性研究及改进方案

肖家浩 曹树春 张子民 李中平 申晓康 赵全堂 程锐 刘铭 赵永涛 袁平

肖家浩, 曹树春, 张子民, 等. 高能电子成像暗场成像技术特性研究及改进方案[J]. 强激光与粒子束, 2019, 31: 115102. doi: 10.11884/HPLPB201931.190003
引用本文: 肖家浩, 曹树春, 张子民, 等. 高能电子成像暗场成像技术特性研究及改进方案[J]. 强激光与粒子束, 2019, 31: 115102. doi: 10.11884/HPLPB201931.190003
Xiao Jiahao, Cao Shuchun, Zhang Zimin, et al. Characteristics and improvement scheme of dark-field imaging of high energy electron radiography[J]. High Power Laser and Particle Beams, 2019, 31: 115102. doi: 10.11884/HPLPB201931.190003
Citation: Xiao Jiahao, Cao Shuchun, Zhang Zimin, et al. Characteristics and improvement scheme of dark-field imaging of high energy electron radiography[J]. High Power Laser and Particle Beams, 2019, 31: 115102. doi: 10.11884/HPLPB201931.190003

高能电子成像暗场成像技术特性研究及改进方案

doi: 10.11884/HPLPB201931.190003
基金项目: 

国家自然科学基金项目 11875303

国家自然科学基金项目 11435015

国家自然科学基金项目 11505251

国家自然科学基金项目 Y940010HJ0

科技部国家重点研发计划 2016YFE0104900

中国科学院科研仪器设备研究项目 Y740010YZB

中国科学院科研仪器设备研究项目 Y740020YHZ

详细信息
    作者简介:

    肖家浩(1989—),男,学士,从事高能电子成像技术研究; xiaojiahao@impcas.ac.cn

    通讯作者:

    张子民(1972—), 男,博士,从事加速器技术相关研究; zzm@impcas.ac.cn

  • 中图分类号: O463.1

Characteristics and improvement scheme of dark-field imaging of high energy electron radiography

  • 摘要: 基于EGS5与PARMELA模拟软件组成的高能电子成像系统,对暗场成像的模拟研究发现,通过调节光阑位置实现的暗场成像结果存在失真现象。针对该失真现象提出的改进方案,消除了暗场成像结果的失真。通过对40 MeV电子透射7~224 μm的铝样品开展的成像模拟结果表明:40 MeV高能电子暗场成像技术在铝样品厚度小于25 μm情况下具有明显的面密度分辨优势,且空间分辨率达到μm量级,非常适用于高能量密度物质诊断。
  • 图  1  高能电子成像原理示意图(在线彩图)

    Figure  1.  The schematic of high energy electron radiography (color on line)

    图  2  暗场成像原理示意图。将光阑位置设定为绿色区域,则为明场成像; 设定为红色区域,则为暗场成像

    Figure  2.  Schematic of dark-field image. When the aperture position is set in the green area, the image is bright-field; when the aperture is set to the red area, the dark field image can be got

    图  3  束线设计示意图

    Figure  3.  Design of simulation beam line

    图  4  铝台阶样品示意图

    Figure  4.  Design of aluminum steps

    图  5  40 MeV电子束透射不同厚度铝样品,电子数密度在Fourier面处沿x轴分布图

    Figure  5.  Distribution of electrons along x-axis at Fourier plane in the case of the 40 MeV electron beam passing through the aluminum specimen with different thickness

    图  6  不同光阑中心位置对应的像平面上电子数密度分布图

    Figure  6.  Results of HEER for different aperture position setting

    图  7  劈裂尺寸模拟值与理论值对比图

    Figure  7.  Comparison of theoretical and simulated values of the crack size

    图  8  改进后的暗场成像束线设计图

    Figure  8.  Optimized design of dark-field image

    图  9  不同入射角度情况下,像平面上的电子数分布图

    Figure  9.  HEER results for different incident angle

    图  10  台阶处的空间分辨率分析方法

    Figure  10.  Schematic of spatial resolution analysis

    图  11  不同狭缝位置与对应入射角度情况下电子数分布拟合曲线对比图

    Figure  11.  Fitting curve of electron number distribution at image plane for different aperture position and different incident angles setting

    图  12  不同入射角度情况下,厚度分辨本领随厚度变化关系图

    Figure  12.  Capabilities of areal density resolution under different incident angle

    表  1  靶平面至Fourier面处的传输矩阵参数

    Table  1.   Matrix parameters of transport from object plane to Fourier plane

    R11F R12F/(mm·mrad-1) R33F R34F/(mm·mrad-1)
    -3.0×10-3 1.1 -6.7×10-3 -5.3
    下载: 导出CSV

    表  2  成像系统传输矩阵参数

    Table  2.   Matrix parameters of transport from object plane to image plane

    R11 R12/(mm·mrad-1) R21/(mm·mrad-1) R22 R33 R34/(mm·mrad-1) R43/(mm·mrad-1) R44
    -1.0 -6.67×10-3 4.8×10-3 -1.0 -1.0 -7.10×10-3 2.35×10-2 -1.0
    下载: 导出CSV

    表  3  不同光阑位置对应的角度筛选区间

    Table  3.   Angle range selected for different aperture position setting

    xaperture/mm angle selected/mrad xaperture/mm angle selected/mrad
    0 -0.23~0.23 10 8.86~9.32
    5 4.32~4.78 15 13.40~13.87
    下载: 导出CSV

    表  4  不同入射角度情况下,对于不同厚度铝样品的空间分辨

    Table  4.   Spatial resolution for different steps and different incident angle

    incident angle/mrad RMS spatial resolution for different steps/μm
    7 μm 14 μm 28 μm 56 μm 112 μm 224 μm
    0 5 6 5 4 2 3
    4.54 3 2 10 9 14 5
    9.09 3 1 7 5 2 3
    13.64 1 5 2 10 3
    下载: 导出CSV
  • [1] Council N, Ebrary I. Frontiers in high energy density physics: the X-games of contemporary science[M]. National Academies Press, 2003.
    [2] Zhao Yongtao, Zhang Zimin, Gai Wei, et al. High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC[J]. Laser and Particle Beams, 2016, 34(2): 338-342. doi: 10.1017/S0263034616000124
    [3] Merrill F, Harmon F, Hunt A, et al. Electron radiography[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 261(1/2): 382-386.
    [4] Merrill F E, Goett J, Gibbs J W, et al. Demonstration of transmission high energy electron microscopy[J]. Applied Physics Letters, 2018, 112: 144103. doi: 10.1063/1.5011198
    [5] Zhao Quantang, Cao Shuchun, Shen Xiaokang, et al. Design and simulation study of ultra-fast beam bunches split for three orthogonal planes high-energy electron dynamic radiography[J]. Laser and Particle Beams, 2017, 35(4): 579-586. doi: 10.1017/S0263034617000647
    [6] Zhao Quantang, Cao Shuchun, Liu Ming, et al. Beam optical design for high energy electron radiography experiment study based on THU LINAC[J]. Physics, 2015.
    [7] Zhou Zheng, Du Yingchao, Cao Shuchun, et al. Experiments on bright-field and dark-field high-energy electron imaging with thick target material[J]. Physical Review Accelerators and Beams, 2018, 21: 074701. doi: 10.1103/PhysRevAccelBeams.21.074701
    [8] 卢亚鑫, 杨国君, 魏涛, 等. 高能电子照相成像模糊模拟研究[J]. 强激光与粒子束, 2016, 28: 014002. doi: 10.11884/HPLPB201628.014002

    Lu Yaxin, Yang Guojun, Wei Tao, et al. Image blur in high energy electron radiography. High Power Laser and Particle Beams, 2016, 28: 014002 doi: 10.11884/HPLPB201628.014002
    [9] Wei Tao, Li Yiding, Yang Guojun, et al. An accelerator scenario for a hard X-ray free electron laser combined with high energy electron radiography[J]. Chinese Physics C, 2016, 40: 088101. doi: 10.1088/1674-1137/40/8/088101
    [10] 王致远, 杜应超, 黄文会. 基于蒙卡和粒子示踪程序的电子成像模拟分析[J]. 强激光与粒子束, 2014, 26: 114007. doi: 10.11884/HPLPB201426.114007

    Wang Zhiyuan, Du Yingchao, Huang Wenhui. Simulation analysis of electron imaging method based on Monte Carlo simulation and particle tracer software. High Power Laser and Particle Beams, 2014, 26: 114007 doi: 10.11884/HPLPB201426.114007
    [11] Xiao Jiahao, Zhang Zimin, Cao Shuchun, et al. Areal density and spatial resolution of high energy electron radiography[J]. Chinese Physics B, 2018, 27: 035202. doi: 10.1088/1674-1056/27/3/035202
    [12] Jiang Xiaoguo, Wang Yuan, Yang Zhiyong, et al. Time-resolved measurement technique for pulsed electron beam envelope basing on framing and streaking principle[J]. Chinese Physics C, 2016, 40: 017003. doi: 10.1088/1674-1137/40/1/017003
    [13] 江孝国, 王远, 代志勇, 等. 高速分幅相机在强流脉冲电子束调试中的应用研究[J]. 激光与光电子学进展, 2014, 51: 022201. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402022.htm

    Jiang Xiaoguo, Wang Yuan, Dai Zhiyong, et al. Application of high speed framing camera in debugging of high current and pulsed electron beam. Laser & Optoelectronics Progress, 2014, 51: 022201 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201402022.htm
    [14] Alber I, Bagnoud V, Brown C R D. Proton acceleration experiments and warm dense matter research using high power lasers[J]. Plasma Physics & Controlled Fusion, 2009, 51(12): 559-566.
    [15] Ernstorfer R, Harb M, Hebeisen C T, et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold[J]. Science, 2009, 323(5917): 1033-1037. doi: 10.1126/science.1162697
    [16] Koenig M, Benuzzi-Mounaix A, Ravasio A, et al. Progress in the study of warm dense matter[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B441.
    [17] Odeblad E. Further approximate studies on beta ray absorption and transmission[J]. Acta Radiologica, 1957(4): 289-306.
    [18] Brown K L. A first and second-order matrix theory for the design of beam transport systems and charged particle spectrometers[J]. Advances in Particle Physics, 1968(1): 71-134.
    [19] Lynch G R, Dahl O I. Approximations to multiple Coulomb scattering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1991, 58(1): 6-10. doi: 10.1016/0168-583X(91)95671-Y
    [20] Hirayama H, Namito Y, Nelson W R, et al. The EGS5 code system[R]. SLAC-R-730. 2007.
    [21] PARMELA. http://laacg.lanl.gov/laacg/services/serv_codes.phtml.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  211
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-08-11
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回