留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HEPS在轴注入冲击器系统及快脉冲电源样机研制

陈锦晖 王磊 施华 霍丽华 王冠文 刘鹏 史晓蕾

陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31: 040017. doi: 10.11884/HPLPB201931.190007
引用本文: 陈锦晖, 王磊, 施华, 等. HEPS在轴注入冲击器系统及快脉冲电源样机研制[J]. 强激光与粒子束, 2019, 31: 040017. doi: 10.11884/HPLPB201931.190007
Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017. doi: 10.11884/HPLPB201931.190007
Citation: Chen Jinhui, Wang Lei, Shi Hua, et al. Application of fast pulsed power supply to high energy photon source[J]. High Power Laser and Particle Beams, 2019, 31: 040017. doi: 10.11884/HPLPB201931.190007

HEPS在轴注入冲击器系统及快脉冲电源样机研制

doi: 10.11884/HPLPB201931.190007
基金项目: 

国家自然科学基金项目 11675194

国家自然科学基金项目 11475200

科技部国家重点研发计划项目 2016YFA0402002

详细信息
    作者简介:

    陈锦晖(1976-), 男,研究员,从事加速器注入引出技术研究;chenjh@ihep.ac.cn

  • 中图分类号: TL501

Application of fast pulsed power supply to high energy photon source

  • 摘要: 高能同步辐射光源(HEPS)是我国计划建造的下一代基于储存环的高亮度光源,束流自然发射度已经接近衍射极限。作为典型的低发射度储存环(LER),HEPS的动力学孔径远小于物理孔径,传统的离轴累积注入已经无法满足要求,只能采用基于strip-line kicker的在轴注入方案。为了实现逐束团操控,HEPS要求注入kicker脉冲电源底宽(3%~3%) < 10 ns,半高宽(50%~50%)>4.5 ns,幅度>±17.5 kV(50 Ω负载),重复频率>50 Hz。高能同步辐射光源验证装置(HEPS-TF)工程研制了一台基于DSRD的双极性快脉冲电源性能样机,在50 Ω负载上可以获得上升时间(10%~90%) < 2.6 ns,下降时间(90%~10%) < 3.2 ns,半高宽(50%~50%)>5 ns,底宽(3%~3%) < 10 ns,幅度>±18 kV的脉冲高压,可以满足HEPS注入基准方案——在轴置换注入的要求。
  • 图  1  HEPS加速器整体布局

    Figure  1.  Layout of HEPS accelerator

    图  2  HEPS储存环注入引出系统布局

    Figure  2.  Layout of HEPS storage ring injection and extraction system

    图  3  束团间距、带状线冲击器长度、电脉冲宽度和偏转量的关系

    Figure  3.  Relationship among bunch spacing, kicker length and pulse width

    图  4  注入引出kicker系统组成

    Figure  4.  Injection and extraction kicker system

    图  5  典型DSRD脉冲源线路模型及仿真结果

    Figure  5.  Schematic and simulation result of typical DSRD pulser circuit

    图  6  DSRD脉冲电源样机电路原理图

    Figure  6.  Schematic of DSRD pulser prototype

    图  7  双极性输出DSRD脉冲电源电路

    Figure  7.  Schematic of bipolar output DSRD pulser

    图  8  DSRD脉冲电源结构

    Figure  8.  DSRD pulser structure

    图  9  DSRD组件

    Figure  9.  DSRD assembly

    图  10  DSRD脉冲电源样机及测试结果

    Figure  10.  DSRD pulser prototype and testing result

    表  1  HEPS注入引出strip-line kicker脉冲电源设计指标

    Table  1.   HEPS injection and extraction strip-line kicker pulser design

    parameters value
    load impedance 50 Ω
    pulse FWHM(50%~50%) >4.5 ns
    pulse bottom width(3%~3%) < 10 ns
    amplitude of pulse ±17.5 kV
    pulse peak reproducibility(p-p) < ±1.5%
    pulse residual voltage < 3%
    pulse repeat rate, CW 50 Hz
    pulse burst rate 50
    jitter trigger to output 0.1 ns
    下载: 导出CSV
  • [1] Xu G, Cui X H, Duan Z, et al. Progress of lattice design and physics studies on the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 1375-1378.
    [2] Jiao Y, Xu G, Peng Y M, et al. Evolution of the lattice design for the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 1363-1366.
    [3] Jiao Y, Xu G. DA optimization experiences in the HEPS lattice design[J]. Journal of Physics Conference Series, 2018, 1067: 032003. doi: 10.1088/1742-6596/1067/3/032003
    [4] Duan Z, Ji D H, Jiao Y. Study of the dynamic aperture reduction due to error effects for the high energy photon source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 4182-4185.
    [5] Duan Z, Chen J H, Guo Y Y, et al. The swap-out injection scheme for the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 4178-4181.
    [6] Harada K, Kobayashi Y, Miyajima T, et al. PF-AR injection system with pulsed quadrupole magnet[C]//Proc of the 3rd Asian Particle Accelerator Conference. 2004: 344-346.
    [7] Kobayashi Y, Harada K. Possibility of the beam injection using a single pulsed sextupole magnet in electron storage rings[C]//Proc of the Tenth European Particle Accelerator Conference. 2006: 3526-3528
    [8] Atkinson T, Dirsat M, Dressler O, et al. Development of a non-linear kicker system to facilitate a new injection scheme for the BESSYⅡ storage ring[C]//Proc of the 2nd International Particle Accelerator Conference. 2012: 3394-3396
    [9] Leemann S C, Dallin L O. Progress on pulsed multipole injection for the MAXIV storage rings[C]//Proc of the 25th Particle Accelerator Conference. 2013: 1052-1054.
    [10] Nakamura T. Bucket-by-bucket on/off-axis injection with variable field fast kicker[C]//Proc of the 2nd International Particle Accelerator Conference. 2012: 1230-1232.
    [11] Yao C, Morrison L, Sun X, et al. Preliminary test results of a prototype fast kicker for APS MBA upgrade[C]//Proc of the North American Particle Accelerator Conference. 2016: 950-952.
    [12] Yao C, Morrison L, Sun X, et al. Development of fast kickers for the APS MBA upgrade[C]//Proc of the 6th International Particle Accelerator Conference. 2015: 3286-3288
    [13] Sun X, Yao C. Simulation studies of a prototype stripline kicker for the APS-MBA upgrade[C]//Proc of the North American Particle Accelerator Conference 2016: 928-930.
    [14] Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proc of the 8th International Particle Accelerator Conference. 2017: 2821-2823.
    [15] Xu G, Chen J, Duan Z, et al. On-axis beam accumulation enabled by phase adjustment of a double-frequency RF system for diffraction-limited storage rings[C]//Proc of the7th International Particle Accelerator Conference. 2016: 2032-2035.
    [16] Aiba M, Böge M, Marcellini F, et al. Longitudinal top-up injection for small aperture storage rings[C]//Proc of the 5th International Particle Accelerator Conference. 2014: 1842-1844.
    [17] Shi H, Chen J H, Wang L, et al. The design and test of a stripline kicker for HEPS[C]//Proc of the Future Light Source Conference. 2018: 117-119.
    [18] Chen J H, Shi H, Wang L. Fast kicker and pulser R&D for the HEPS on-axis injection system[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 2846-2849.
    [19] Shi H, Chen J H, Wang L, et al. Development of a 750-mm-long strip-line kicker for HEPS[J]. Radiation Detection Technology and Methods, 2018, 2: 47. doi: 10.1007/s41605-018-0076-9
    [20] Cook E G. Review of solid-state modulators[C]//Proc of the International Linac Conference. 2000.
    [21] 陈锦晖, 韩谦. ns级快脉冲电源研制[J]. 原子能科学技术, 2014, 48(1): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201401032.htm

    Chen Jinhui, Han Qian. Research and development of ns pulse width ultrafast pulsed power supply. Atomic Energy Science and Technology, 2014, 48(1): 185-189 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201401032.htm
    [22] Kesar A S, Sharabani Y, Merensky L M. Power drift step recovery diode[J]. Solid-State Electronics, 1985, 28(6): 537-644. doi: 10.1016/0038-1101(85)90122-4
    [23] Benwell A, Burkhart C, Krasnykh A. A 5 kV, 3 MHz solid-state modulator based on the DSRD switch for an ultra-fast beam kicker[C]//IEEE International Power Modulator and High Voltage Conference. 2012: 328-331.
    [24] Krasnykn A, Benwell A, Beukers T. R&D at SLAC on nanosecond range multi MW systems for advanced FEL facilities[C]//Proc of the 38th International Free-Electron Laser Conference. 2017.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2064
  • HTML全文浏览量:  541
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 修回日期:  2019-03-14
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回