Application of fast pulsed power supply to high energy photon source
-
摘要: 高能同步辐射光源(HEPS)是我国计划建造的下一代基于储存环的高亮度光源,束流自然发射度已经接近衍射极限。作为典型的低发射度储存环(LER),HEPS的动力学孔径远小于物理孔径,传统的离轴累积注入已经无法满足要求,只能采用基于strip-line kicker的在轴注入方案。为了实现逐束团操控,HEPS要求注入kicker脉冲电源底宽(3%~3%) < 10 ns,半高宽(50%~50%)>4.5 ns,幅度>±17.5 kV(50 Ω负载),重复频率>50 Hz。高能同步辐射光源验证装置(HEPS-TF)工程研制了一台基于DSRD的双极性快脉冲电源性能样机,在50 Ω负载上可以获得上升时间(10%~90%) < 2.6 ns,下降时间(90%~10%) < 3.2 ns,半高宽(50%~50%)>5 ns,底宽(3%~3%) < 10 ns,幅度>±18 kV的脉冲高压,可以满足HEPS注入基准方案——在轴置换注入的要求。Abstract: High Energy Photon Source (HEPS) is the next generation of high-brightness photon source based on storage ring planned in China. Its natural emittance of the beam is close to the diffraction limit. As a typical low emittance storage ring (LER), the dynamic aperture of HEPS is far smaller than the physical aperture. Hence the traditional off-axis cumulative injection can not meet the requirements, and only strip-line kicker based on in-line injection scheme can be used. In order to realize bunch-by-bunch control, HEPS requires injecting kicker electrical pulse with a bottom width (3%-3%) of less than 10 ns, a half width (50%-50%) of more than 4.5 ns, an amplitude of >+17.5 kV (50 Ω load) and a repetition frequency of more than 50 Hz. A prototype of bipolar fast pulsed power supply based on DSRD has been developed on the project of HEPS-TF. The performance of the prototype can produce a pulse at 50 Ω load with rise time (10%-90%) < 2.6 ns, fall time (90%-10%) < 3.2 ns, FWHM (50%-50%) > 5 ns, bottom width (3%-3%) < 10 ns, amplitude >18 kV. It can meet the requirement of on-axis swap-out injection which is the baseline injection scheme of HEPS.
-
Key words:
- HEPS /
- DLSR /
- injection and extraction /
- on-axis injection /
- strip-line kicker /
- fast pulser /
- DSRD
-
表 1 HEPS注入引出strip-line kicker脉冲电源设计指标
Table 1. HEPS injection and extraction strip-line kicker pulser design
parameters value load impedance 50 Ω pulse FWHM(50%~50%) >4.5 ns pulse bottom width(3%~3%) < 10 ns amplitude of pulse ±17.5 kV pulse peak reproducibility(p-p) < ±1.5% pulse residual voltage < 3% pulse repeat rate, CW 50 Hz pulse burst rate 50 jitter trigger to output 0.1 ns -
[1] Xu G, Cui X H, Duan Z, et al. Progress of lattice design and physics studies on the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 1375-1378. [2] Jiao Y, Xu G, Peng Y M, et al. Evolution of the lattice design for the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 1363-1366. [3] Jiao Y, Xu G. DA optimization experiences in the HEPS lattice design[J]. Journal of Physics Conference Series, 2018, 1067: 032003. doi: 10.1088/1742-6596/1067/3/032003 [4] Duan Z, Ji D H, Jiao Y. Study of the dynamic aperture reduction due to error effects for the high energy photon source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 4182-4185. [5] Duan Z, Chen J H, Guo Y Y, et al. The swap-out injection scheme for the High Energy Photon Source[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 4178-4181. [6] Harada K, Kobayashi Y, Miyajima T, et al. PF-AR injection system with pulsed quadrupole magnet[C]//Proc of the 3rd Asian Particle Accelerator Conference. 2004: 344-346. [7] Kobayashi Y, Harada K. Possibility of the beam injection using a single pulsed sextupole magnet in electron storage rings[C]//Proc of the Tenth European Particle Accelerator Conference. 2006: 3526-3528 [8] Atkinson T, Dirsat M, Dressler O, et al. Development of a non-linear kicker system to facilitate a new injection scheme for the BESSYⅡ storage ring[C]//Proc of the 2nd International Particle Accelerator Conference. 2012: 3394-3396 [9] Leemann S C, Dallin L O. Progress on pulsed multipole injection for the MAXIV storage rings[C]//Proc of the 25th Particle Accelerator Conference. 2013: 1052-1054. [10] Nakamura T. Bucket-by-bucket on/off-axis injection with variable field fast kicker[C]//Proc of the 2nd International Particle Accelerator Conference. 2012: 1230-1232. [11] Yao C, Morrison L, Sun X, et al. Preliminary test results of a prototype fast kicker for APS MBA upgrade[C]//Proc of the North American Particle Accelerator Conference. 2016: 950-952. [12] Yao C, Morrison L, Sun X, et al. Development of fast kickers for the APS MBA upgrade[C]//Proc of the 6th International Particle Accelerator Conference. 2015: 3286-3288 [13] Sun X, Yao C. Simulation studies of a prototype stripline kicker for the APS-MBA upgrade[C]//Proc of the North American Particle Accelerator Conference 2016: 928-930. [14] Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proc of the 8th International Particle Accelerator Conference. 2017: 2821-2823. [15] Xu G, Chen J, Duan Z, et al. On-axis beam accumulation enabled by phase adjustment of a double-frequency RF system for diffraction-limited storage rings[C]//Proc of the7th International Particle Accelerator Conference. 2016: 2032-2035. [16] Aiba M, Böge M, Marcellini F, et al. Longitudinal top-up injection for small aperture storage rings[C]//Proc of the 5th International Particle Accelerator Conference. 2014: 1842-1844. [17] Shi H, Chen J H, Wang L, et al. The design and test of a stripline kicker for HEPS[C]//Proc of the Future Light Source Conference. 2018: 117-119. [18] Chen J H, Shi H, Wang L. Fast kicker and pulser R&D for the HEPS on-axis injection system[C]//Proc of the 9th International Particle Accelerator Conference. 2018: 2846-2849. [19] Shi H, Chen J H, Wang L, et al. Development of a 750-mm-long strip-line kicker for HEPS[J]. Radiation Detection Technology and Methods, 2018, 2: 47. doi: 10.1007/s41605-018-0076-9 [20] Cook E G. Review of solid-state modulators[C]//Proc of the International Linac Conference. 2000. [21] 陈锦晖, 韩谦. ns级快脉冲电源研制[J]. 原子能科学技术, 2014, 48(1): 185-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201401032.htmChen Jinhui, Han Qian. Research and development of ns pulse width ultrafast pulsed power supply. Atomic Energy Science and Technology, 2014, 48(1): 185-189 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201401032.htm [22] Kesar A S, Sharabani Y, Merensky L M. Power drift step recovery diode[J]. Solid-State Electronics, 1985, 28(6): 537-644. doi: 10.1016/0038-1101(85)90122-4 [23] Benwell A, Burkhart C, Krasnykh A. A 5 kV, 3 MHz solid-state modulator based on the DSRD switch for an ultra-fast beam kicker[C]//IEEE International Power Modulator and High Voltage Conference. 2012: 328-331. [24] Krasnykn A, Benwell A, Beukers T. R&D at SLAC on nanosecond range multi MW systems for advanced FEL facilities[C]//Proc of the 38th International Free-Electron Laser Conference. 2017.