Cavity beam position monitor in laser-driven proton accelerator
-
摘要: 根据激光驱动质子束流低发射度、短脉冲、单束团低电量的性质,研究腔式束流位置探测器(BPM)测量激光加速器产生的质子束团横向位置的可行性问题。针对质子束团的大横向分布和发散角问题,推导了其通过腔式BPM的输出信号,结果表明该信号与集中从束团对称中心、倾斜一定角度通过的束流产生的输出信号相同。依据上述原理,使用CST软件进行了腔式BPM的设计和仿真,确定了矩形谐振腔波导耦合的方案。讨论了该方案的腔式BPM对于激光加速束流的适用性和不同激光驱动质子束流参数的分辨率,并针对PW级激光加速系统进行了分辨率估算。Abstract: According to low-emittance, short-pulse and low-charge-in-single-bunch properties of laser-driven proton beam, we study the feasibility of cavity beam position monitor (BPM) to measure the transverse position of proton beam generated by laser accelerator. In view of the large transverse distribution and divergence angle of proton beam, we derive the output signal when it goes through the cavity BPM, and the result shows that the output signal is identical to that generated by the beam passing through the symmetry center of the transverse distribution and at a certain angle of inclination. Based on the above principle, we use CST software to design and simulate cavity BPM, and determine the scheme of rectangular cavity with coupling waveguide. We discuss the applicability of this scheme for laser-accelerated beam and the resolution of different laser-driven proton beam parameters, and estimate the resolution of PW laser acceleration system.
-
Key words:
- cavity BPM /
- laser-driven proton /
- large transverse distribution /
- divergence angle
-
图 1 (a) RCF测得约25%能散束流横向分布,(b)闪烁体测得约4%能散束流横向分布,(c)MCP测得约1%能散束流横向分布
Figure 1. Experimental results: (a) beams' transverse distribution with about 25% energy dispersion on RCF, (b) beams' transverse distribution with about 4% energy dispersion on scintillator, and (c) beams' transverse distribution with about 1% energy dispersion on MCP
表 1 腔式BPM优化尺寸
Table 1. Optimum geometry of cavity BPM
a /mm b/mm L/mm D/mm waveguide length X/mm waveguide position X/mm waveguide length Y/mm waveguide position Y/mm 241.6 210 75 80 250 90.5 280 76 表 2 腔式BPM理论参数
Table 2. Theoretical parameters of cavity BPM
f110/GHz (R/Q0)110/Ω f210/GHz (Qext)210 (R/Q0)210/Ω f120/GHz (Qext)120 (R/Q0)120/Ω 0.9167 224.5 1.320 1955 0.1088 1.420 2103 0.1328 表 3 分辨率估计
Table 3. Resolution estimation
E/MeV σt/ps q/pC (R/Q0)210/Ω resolution/mm 30 273 500 0.039 2 0.6 50 208 150 0.050 7 0.8 100 142 50 0.093 2 1 -
[1] Schwoerer H, Pfotenhauer S, Jäckel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448. doi: 10.1038/nature04492 [2] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945 [3] Tajima T, Habs D, Yan X Q. Laser acceleration of ions for radiation therapy[J]. Reviews of Accelerator Science and Technology, 2009, 2(01): 201-228. doi: 10.1142/S1793626809000296 [4] 毕宏宇, 徐韬光, 傅世年. 中国散裂中子源快循环同步加速器环斜切型束流位置探测器设计[J]. 原子能科学技术, 2011, 45(5): 600-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201105018.htmBi Hongyu, Xu Taoguang, Fu Shinian. Design of linear-cut beam position monitor in rapid cycling synchrotron of China spallation neutron source. Atomic Energy Science and Technology, 2011, 45(5): 600-605 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201105018.htm [5] Wang M W, Zhen S X, Zhang H Y, et al. Development of Shoebox BPM for Xi'an Proton Application Facility[C]//Proceedings of IPAC2016. 2016: 175-177. [6] Walston, S, Boogert, S, Chung, C, et al. Performance of a high resolution cavity beam position monitor system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 578(1): 1-22. [7] Tomoya Nakamura. Development of beam-position monitors with high position resolution[D]. Tokyo: The University of Tokyo, 2008. [8] Cowan, T E, Fuchs J, Ruhl H, et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator[J]. Physical Review Letters, 2004, 92: 204801. doi: 10.1103/PhysRevLett.92.204801 [9] Sargsyan V. Cross-talk problem in pill-box cavity[R]. TESLA Report 2003-01, 2003. [10] 李享. 腔式束流位置检测器的设计与实验[D]. 北京: 清华大学, 2009.Li Xiang. Design and experiments for cavity beam position monitor. Beijing: Tsinghua University, 2009 [11] Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701. doi: 10.1063/1.4958654 [12] Liao Q, Wu M J, Gong Z, et al. Enhanced laser proton acceleration by target ablation on a femtosecond laser system[J]. Physics of Plasmas, 2018, 25: 063109. doi: 10.1063/1.5025239