Development of cascade high voltage repetitive frequency microsecond pulse power supply
-
摘要: 针对等离子体的应用,基于级联型电压叠加技术研制了一种最高输出电压为20 kV的高压微秒脉冲源,该电源由40个相同的电源模块组成,其单个模块电压等级为500 V,降低了对器件的绝缘耐压要求。电源的输出电压值在0~20 kV之间可调;重复频率在0~10 kHz之间、脉宽在0~30 μs之间可调;该电源的上升沿和下降沿均在1 μs以内。模块化的设计提高了电源的冗余容错能力。将该电源作为产生等离子体的激励源时,其输出的高压脉冲波形稳定,且根据负载对输出高压波形的要求不同,该电源可以方便地进行调节。Abstract: In this paper, a cascade high voltage microsecond pulse power supply with output voltage of 20 kV is developed. The voltage level of a single module is 500 V, which reduces the insulation withstand high voltage requirements of the device. The output voltage value range of this pulse power supply is 0-20 kV; the repetition frequency is adjustable between 0-10 kHz; the pulse width is adjustable between 0-30 μs; the output current value is between 0-15 A; the rising and falling edge of the power supply are all within 1μs. Modular design improves the redundancy fault tolerance of this power supply and reduces its failure rate. When this power source is used as an excitation source for plasma production, and the output high voltage pulse waveform is stable, the power supply can be conveniently adjusted according to different load. When the voltage and frequency change, the mode of the discharge is different.
-
Key words:
- pulse power /
- repetitive frequency /
- cascade power supply /
- plasma /
- indirect light trigger
-
表 1 仿真参数
Table 1. Simulation parameters
input voltage/V filter capacitance/μF switching frequency/kHz pulse width/μs resistance/kΩ 360 47 1 10 2 -
[1] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htmWu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 618-631 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502001.htm [2] 王新新, 付洋洋. 气体放电的相似性[J]. 高电压技术, 2014, 40(10): 2966-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201410003.htmWang Xinxin, Fu Yangyang. Similarity in gas discharges. High Voltage Engineering, 2014, 40(10): 2966-2972 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201410003.htm [3] 孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10): 2956-2965. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201410002.htmKong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses. High Voltage Engineering, 2014, 40(10): 2956-2965 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201410002.htm [4] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3);685-705. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htmShao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application. High Voltage Engineering, 2016, 42(3): 685-705 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htm [5] Burlica R, Finney W, Locke B. The effects of voltage and current waveforms and discharge power on hydrogen peroxide formation in a water-spray gliding arc reactor[J]. IEEE Trans Industry Applications, 2013, 49(3): 1098-1103. doi: 10.1109/TIA.2013.2253080 [6] Ayan H, Staack D, Fridman G, et al. Uniform dielectric barrier discharge with nanosecond pulse excitation for biomedical application[J]. Journal of Physics D: Applied Physics, 2009, 42: 125202. doi: 10.1088/0022-3727/42/12/125202 [7] Li L, Peng M Y, Teng Y, et al. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air[J]. Applied Surface Science, 2016, 362: 348-354. doi: 10.1016/j.apsusc.2015.11.166 [8] Zorngiebel V, Hecquard M, Spahn E, et al. Modular 50 kV IGBT switch for pulsed-power applications[J]. IEEE Trans on Plasma Science, 2011, 39(1): 364-367. doi: 10.1109/TPS.2010.2068061 [9] Singleton D R, Kuthi A, Sanders J M, et al. Low energy compact power modulators for transient plasma ignition[J]. IEEE Trans Dielectrics and Electrical Insulation, 2011, 18(4): 1084-1090. doi: 10.1109/TDEI.2011.5976099 [10] Shao Tao, Huang Weimin, Li Wenfeng, et al. A cascaded microsecond-pulse generator for discharge applications[J]. IEEE Trans Plasma Science, 2014, 42(6): 1721-1728. doi: 10.1109/TPS.2014.2320999 [11] 巩春志, 田修波, 曹珍恩, 等. 10 kV等离子体表面改性高压脉冲电源[J]. 强激光与粒子束, 2007, 19(11): 1927-1930. http://www.hplpb.com.cn/article/id/2301Gong Chunzhi, Tian Xiubo, Cao Zhenen, et al. 10 kV high voltage pulse power supply for plasma surface modification. High Power Laser and Particle Beams, 2007, 19(11)1927-1930. http://www.hplpb.com.cn/article/id/2301 [12] 雷宇, 邱剑, 刘克富. 150 kV全固态高压脉冲发生器设计[J]. 强激光与粒子束, 2012, 24(3): 673-677. doi: 10.3788/HPLPB20122403.0673Lei Yu, Qiu Jian, Liu Kefu. Design of 150kV all-solid-state high voltage pulse power generator. High Power Laser and Particle Beams, 2012, 24(3): 673-677 doi: 10.3788/HPLPB20122403.0673 [13] 王磊, 章程, 罗振兵, 等. 面向等离子体合成射流应用的微秒脉冲研制[J]. 强激光与粒子束, 2014, 28: 045013. doi: 10.11884/HPLPB201628.125013Wang Lei, Zhang Cheng, Luo Zhenbing, et al. Compact microsecond-pulse generator for plasma synthetic jet. High Power Laser and Particle Beams, 2014, 28: 045013 doi: 10.11884/HPLPB201628.125013 [14] Liu Kun, Gao Yinghui, Fu Rongyao, et al. Design of control system for battery cascade charging power supply[J]. IEEE Trans Plasma Science, 2017, 45(7): 1245-1250. [15] 徐旭哲, 周杨, 孙鹞鸿. 磁隔离触发式10 kV级联型脉冲电源研制[J]. 强激光与粒子束, 2016, 28: 075001. doi: 10.11884/HPLPB201628.075001Xu Xuzhe, Zhou Yang, Sun Yaohong. Development of 10kV cascaded pulse power supply based on magnetic isolation trigger. High Power Laser and Particle Beams, 2016, 28: 075001 doi: 10.11884/HPLPB201628.075001 [16] 甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30: 065003. doi: 10.11884/HPLPB201830.170335Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335 [17] 熊兰, 马龙, 胡国辉, 等. 具有负载普适性的高压双极性方波脉冲源研制[J]. 电工技术学报, 2015, 30(12): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201512007.htmXiong Lan, Ma Long, Hu Guohui, et al. A newly high-voltage square bipolar pulse generator for various loads. Transactions of China Electrical Technology, 2015, 30(12): 51-59 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201512007.htm [18] YuC H, Jang S R, Kim H S, et al. Driving circuit with active pull-down function for a solid-state pulse power modulator[J]. IEEE Trans Power Electronics, 2018, 33(1): 240-247.