留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽禁带碳化硅单晶衬底及器件研究进展

肖龙飞 徐现刚

肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043
引用本文: 肖龙飞, 徐现刚. 宽禁带碳化硅单晶衬底及器件研究进展[J]. 强激光与粒子束, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043
Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043
Citation: Xiao Longfei, Xu Xiangang. Recent development of wide bandgap semiconductor SiC substrates and device[J]. High Power Laser and Particle Beams, 2019, 31: 040003. doi: 10.11884/HPLPB201931.190043

宽禁带碳化硅单晶衬底及器件研究进展

doi: 10.11884/HPLPB201931.190043
基金项目: 

国家重点研发计划项目 2016YFB0400401

山东大学基本科研项目 2016JC037

山东大学基本科研项目 2018JCG01

山东省重点研发项目 2017CXGC0412

烟台“十三五”海洋经济创新发展示范项目 YHCX-ZB-L-201703

详细信息
    作者简介:

    肖龙飞(1989-), 男,博士,从事半导体器件研究;xiaolongfeixlf@163.com

    通讯作者:

    徐现刚(1965-), 男,博士,教授,从事碳化硅材料生长、激光二极管制备等相关研究;xxu@sdu.edu.cn

  • 中图分类号: TN304.24; TN305

Recent development of wide bandgap semiconductor SiC substrates and device

  • 摘要: 碳化硅作为第三代宽禁带半导体的核心材料之一,相对于传统的硅和砷化镓等半导体材料,具有禁带宽度大、载流子饱和迁移速度高,热导率高、临界击穿、场强高等诸多优异的性质。基于这些优良的特性,碳化硅材料是制备高温电子器件、高频大功率器件的理想材料。近年来在碳化硅材料生长和器件制备方面取得重大进展,对碳化硅材料特性和生长方法进行回顾,并研究了碳化硅光导开关偏压、触发能量、导通电流之间的关系,以及开关失效情况下电极表面的损伤情况。
  • 图  1  不同构型的SiC单晶的硅碳双原子层排列顺序

    Figure  1.  Stacking sequence of double atomic layers of different SiC polytypes

    图  2  碳化硅单晶生长示意图

    Figure  2.  Schematic of SiC growth geometry models

    图  3  Cree公司SiC产品:8 inch试样

    Figure  3.  SiC substrates made by Cree: 8inch wafer

    图  4  山东大学6 inch SiC单晶及衬底

    Figure  4.  6 inch SiC single crystal and substrate grown by Shandong University

    图  5  电流值随不同偏置电压的变化

    Figure  5.  Current value with different bias voltage

    图  6  电流值随不同激光能量的变化

    Figure  6.  Current value with different laser energy

    图  7  器件寿命图

    Figure  7.  Device lifetime diagram

    图  8  PCSS失效形貌图

    Figure  8.  Images of cracks in the failed PCSS

    表  1  SiC与Si和GaAs的物理特性参数比较

    Table  1.   Properties comparison between Si, GaAs and SiC

    material band gap/eV dielectric constant breakdown field/(MV·cm-1) saturated electron drift velocity/(cm·s-1) intrinsic carrier concentration/cm-3 electron mobility/(cm2·V·s-1) thermal conductivity/(W·cm-1·K-1)
    Si 1.12 11.8 0.3 1.0×107 1.5×1010 1400 1.50
    GaAs 1.43 12.8 0.6 1.0×107 1.8×106 8500 0.46
    6H-SiC 3.03 9.6 3.2 2.0×107 2.3×10-6 400 4.90
    4H-SiC 3.26 9.7 3.0 2.0×107 8.2×10-9 1140 4.90
    下载: 导出CSV
  • [1] Powell A R, Rowland L B. SiC materials—progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955. doi: 10.1109/JPROC.2002.1021560
    [2] Neudeck P G, Okojie R S, Chen L Y. High temperature electronics—a role for wide bandgap semiconductors[J]. Proc of the IEEE, 2006, 90(6): 1065-1076.
    [3] Hudgins J. Wide and narrow bandgap semiconductors for power electronics: A new valuation[J]. Journal of Electronic Material, 2003, 32(6): 471-477. doi: 10.1007/s11664-003-0128-9
    [4] Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. doi: 10.1063/1.358463
    [5] 郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2000: 116-119.

    Hao Yue, Peng Jun, Yang Yintang. The technology of silicon carbide broadband gap semiconductor. Beijing: Science Press, 2000: 116-119
    [6] Glass R C, Henshall D, Tsvetkov V F, et al. SiC-seeded crystal growth[J]. MRS Bulletin, 1997, 22(3): 30-35. doi: 10.1557/S0883769400032735
    [7] Yashiro N, Kusunoki K, Kamei K, et al. Growth of SiC single crystal from Si-C-(Co, Fe) ternary solution[C]//Materials science forum. Trans Tech Publications, 2006, 527: 115-118.
    [8] Kimoto T, Cooper J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. John Wiley & Sons, 2014.
    [9] Danno K, Saitoh H, Seki A, et al. High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt[J]. Materials Science Forum, 2010, 645/648: 13-16. doi: 10.4028/www.scientific.net/MSF.645-648.13
    [10] 彭燕, 陈秀芳, 彭娟, 等. 高质量半绝缘ϕ150 mm 4H-SiC单晶生长研究[J]. 人工晶体学报, 2016, 45(5): 1145-1152. doi: 10.3969/j.issn.1000-985X.2016.05.001

    Peng Yan, Chen Xiufang, Peng Juan, et al. Study on the growth of high quality semi-insulating ϕ150 mm 4H-SiC single crystal. Journal of Synthetic Crystals, 2016, 45(5): 1145-1152 doi: 10.3969/j.issn.1000-985X.2016.05.001
    [11] Bluhm H. Pulsed power systems[M]. Berlin: Springer-Verlag, 2006.
    [12] Cho P S, Goldhar J, Lee C H, et al. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices[J]. Journal of Applied Physics, 1995, 77(4): 1591-1599. doi: 10.1063/1.358912
    [13] Sheng S, Spencer M G, Tang X, et al. Polycrystalline cubic silicon carbide photoconductive switch[J]. IEEE Electron Device Lett, 1997, 18(8): 372-374. doi: 10.1109/55.605443
    [14] Dogˇ an S, Teke A, Huang D, et al. 4H-SiC photoconductive switching devices for use in high-power applications[J]. Applied Physics Letters, 2003, 82(18): 3107-3109. doi: 10.1063/1.1571667
    [15] Zhu K, Dogˇ an S, Moon Y T, et al. Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86: 261108. doi: 10.1063/1.1951056
    [16] Mauch D, Sullivan W, Bullick A, et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms[J]. IEEE Trans Plasma Science, 2015, 43(6): 2021-2031. doi: 10.1109/TPS.2015.2424154
    [17] Tiskumara R, Joshi R P, Mauch D, et al. Analysis of high field effects on the steady-state current-voltage response of semi-insulating 4H-SiC for photoconductive switch applications[J]. Journal of Applied Physics, 2015, 118: 095701. doi: 10.1063/1.4929809
    [18] Chowdhury A R, Mauch D, Joshi R P, et al. Contact extensions over a high-dielectric layer for surface field mitigation in high power 4H-SiC photoconductive switches[J]. IEEE Trans Electron Devices, 2016, 63(8): 3171-3176.
    [19] 刘金锋, 袁建强, 刘宏伟, 等. 影响碳化硅光导开关最小导通电阻的因素[J]. 强激光与粒子束, 2012, 24(3): 607-611. doi: 10.3788/HPLPB20122403.0607

    Liu Jinfeng, Yuan Jianqiang, Liu Hongwei, et al. Factors affecting minimum on-state resistance of SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2012, 24(3): 607-611 doi: 10.3788/HPLPB20122403.0607
    [20] 周天宇, 刘学超, 代冲冲, 等. V掺杂6H-SiC光导开关制备与性能研究[J]. 强激光与粒子束, 2014, 26: 045043. doi: 10.11884/HPLPB201426.045043

    Zhou Tianyu, Liu Xuechao, Dai Chongchong, et al. Fabrication and properties of V-doped semi-insulating 6H-SiC photoconductive semiconductor switch. High Power Laser and Particle Beams, 2014, 26: 045043 doi: 10.11884/HPLPB201426.045043
    [21] Cao Penghui, Huang Wei, Guo Hui, et al. Performance of a vertical 4H-SiC photoconductive switch with AZO transparent conductive window and silver mirror reflector[J]. IEEE Trans Electron Devices, 2018, 65(5): 2047-2051. doi: 10.1109/TED.2018.2815634
    [22] Xiao Longfei, Yang Xianglong, Duan Peng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [23] Luan Chongbiao, Li Boting, Zhao Juan, et al. A new phenomenon in semi-insulating 4H-SiC photoconductive semiconductor switches[J]. IEEE Trans Electron Devices, 2018, 65(1): 172-175. doi: 10.1109/TED.2017.2777600
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2138
  • HTML全文浏览量:  438
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-09
  • 修回日期:  2019-03-01
  • 刊出日期:  2019-04-15

目录

    /

    返回文章
    返回