留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽频带温度脉动仪的大气温度起伏谱测量

任鹏飞 崔朝龙 刘庆 黄宏华

任鹏飞, 崔朝龙, 刘庆, 等. 基于宽频带温度脉动仪的大气温度起伏谱测量[J]. 强激光与粒子束, 2019, 31: 081001. doi: 10.11884/HPLPB201931.190048
引用本文: 任鹏飞, 崔朝龙, 刘庆, 等. 基于宽频带温度脉动仪的大气温度起伏谱测量[J]. 强激光与粒子束, 2019, 31: 081001. doi: 10.11884/HPLPB201931.190048
Ren Pengfei, Cui Chaolong, Liu Qing, et al. Measurements of the spectrum of atmospheric temperature fluctuations based on broadband micro-temperature sensor[J]. High Power Laser and Particle Beams, 2019, 31: 081001. doi: 10.11884/HPLPB201931.190048
Citation: Ren Pengfei, Cui Chaolong, Liu Qing, et al. Measurements of the spectrum of atmospheric temperature fluctuations based on broadband micro-temperature sensor[J]. High Power Laser and Particle Beams, 2019, 31: 081001. doi: 10.11884/HPLPB201931.190048

基于宽频带温度脉动仪的大气温度起伏谱测量

doi: 10.11884/HPLPB201931.190048
基金项目: 

中国科学院战略性先导科技转型(A类) 基金项目 XDA17010104

详细信息
    作者简介:

    任鹏飞(1993-), 男, 硕士研究生, 主要从事对流湍流池的研制及实验研究, siwuxie1@mail.ustc.edu.cn

    通讯作者:

    黄宏华(1976-), 男, 研究员, 主要从事大气光学参数特性、湍流图像传输研究, hhhuang@aiofm.ac.cn

  • 中图分类号: TN246

Measurements of the spectrum of atmospheric temperature fluctuations based on broadband micro-temperature sensor

  • 摘要: 常用温度脉动仪测量湍流的频谱, 频谱范围多在20Hz以下, 无法呈现大气温度起伏的高频特征。介绍一种宽频带低噪声温度脉动仪的设计方法, 研制出相应的仪器, 并进行了真实大气温度起伏测量实验。结果表明, 大气温度起伏具有丰富的高频信息, 温度起伏功率谱在更宽的频率范围内存在幂率不变性, 部分温度谱在高频部分出现拐点, 以更陡的幂率下降, 湍流谱的形状以及拐点出现的位置和湍流强度有一定的关系。拓宽了温度起伏功率谱的研究范围, 为光波传输的理论研究和技术应用提供了高频湍流谱信息, 为非Kolmogorov湍流研究提供了测量手段。
  • 图  1  信号采集放大电路

    Figure  1.  Acquisition and amplification circuit

    图  2  微弱信号检测

    Figure  2.  Weak signal detection

    图  3  系统噪声

    Figure  3.  System noise

    图  4  不同湍流强度下的大气温度起伏谱

    Figure  4.  The spectra of atmospheric temperature fluctuations in different turbulences

    图  5  直径6 μm温度谱幂率统计(0.1~35 Hz)

    Figure  5.  Probability distributions of power law measurements with 6 μm tungsten wire

    图  6  高频部分有拐点的大气温度起伏谱

    Figure  6.  Atmospheric temperature fluctuation spectra with inflection point in high frequency

    表  1  钨丝参数(293 K, 2 m/s,105 Pa)

    Table  1.   Parameters of tungsten wire(293 K, 2 m/s, 105 Pa)

    Re Nu h/(W·m-2·K-1) M/ms fs/Hz R ρ0/(Ω·mm2·m-1) d/μm
    0.797 0.732 3 159.8 1.194 133.29 20 0.055 6
    下载: 导出CSV

    表  2  6 μm直径的钨丝不同幂率温度谱出现的概率

    Table  2.   Probability distributions of power law measurement with 6 μm tungsten wire

    power law k probability/%
    >-5/3+0.20 1.6
    -5/3-0.20~-5/3+0.20 52.2
    -5/3-0.20 46.2
    下载: 导出CSV
  • [1] 饶瑞中. 从光闪烁频谱反演大气湍流谱: 原理与数值模拟[J]. 力学学报, 2002, 34(5): 682. doi: 10.3321/j.issn:0459-1879.2002.05.004

    Rao Ruizhong. Retrieval of turbulence spectrum from temporal spectrum of a light wave propagating through atmosphere: principle and simulations. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(5): 682 doi: 10.3321/j.issn:0459-1879.2002.05.004
    [2] Beland R R. Propagation through atmospheric optical turbulence[M]. Bellingham: SPIE Optical Engineering Press, 1993.
    [3] 曾宗泳, 袁仁民, 谭锟, 等. 复杂地形近地面温度谱[J]. 量子电子学报, 1998, 4(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802001.htm

    Zeng Zongyong, Yuan Renmin, Tan Kun, et al. The spectrum of temperature in the surface layer over complicated terrain. Chinese Journal of Quantum Electronics, 1998, 4(2): 134-139 https://www.cnki.com.cn/Article/CJFDTOTAL-LDXU199802001.htm
    [4] Jumper G Y, Vernin J, Azouit M, et al. Comparison of recent measurements of atmospheric optical turbulence[C]//36th Plasma Dynamics and Lasers Conference. 2005, AIAA-2005-4778.
    [5] Yao Yuancheng. Analysis of the influence factors to measurement of micro-thermometer. Hefei: University of Chinese Academy of Sciences, 2013: 68-72
    [6] Wyngaad J C, Izumi Y, Collins S A, et al. Behavior of the refractive-index-parameter near the ground[J]. J Opt Soc Am, 1971, 61: 1646-1650. doi: 10.1364/JOSA.61.001646
    [7] 童诗白, 华成英. 模拟电路技术基础[M]. 北京: 高等教育出版社, 2006.

    Tong Shibai, Hua Chengying. The science of electroics: analog devices. Beijing: Higher Education Press, 2006
    [8] 刘树棠, 朱茂林, 荣玫. 基于运算放大器和模拟集成电路的电路设计[M]. 西安: 西安交通大学出版社, 2014.

    Liu Shutang, Zhu Maolin, Rong Mei. Design with operational amplifiers and analog integrated circuits. Xi'an: Xi'an Jiaotong University Press, 2014
    [9] 周秀骥, 陶善昌, 姚克亚. 高等大气物理学[M]. 北京: 气象出版社, 1991. 199-206.

    Zhou Xiuji, Tao Shanchang, Yao Keya. Advanced atmospheric physics. Beijing: China Meteorological Press, 1991. 199-206
    [10] 塔塔尔斯基B N. 湍流大气中波的传播理论[M]. 温景嵩译. 北京: 科学出版社, 1978.

    Татарский В И. Theory of light propagation in turbulent atmosphere. Trans by Wen Jingsong. Beijing: Science Press, 1978
    [11] 曾宗泳, 刘小勤, 马成胜, 等. 复杂地形近地面光学湍流[J]. 强激光与粒子束, 1999, 11(6): 668. http://www.hplpb.com.cn/article/id/1538

    Zeng Zongyong, Liu Xiaoqin, Ma Chengsheng, et al. Optical turbulence in the surface layer over complex terrain. High Power Laser and Particle Beams, 1999, 11(6): 668 http://www.hplpb.com.cn/article/id/1538
    [12] 梅海平, 吴晓庆, 饶瑞中. 非Kolmogorov大气湍流温度谱标度指数的测量与分析[J]. 强激光与粒子束, 2006, 18(9): 1423-1427. http://www.hplpb.com.cn/article/id/2740

    Mei Haiping, Wu Xiaoqing, Rao Ruizhong, et al. Measurement and analysis of temperature power spectrum scaling exponent in non-Kolmogorov turbulent atmosphere. High Power Laser and Particle Beams, 2006, 18(9): 1423-1427 http://www.hplpb.com.cn/article/id/2740
    [13] 吴晓庆, 王英俭, 曾宗泳, 等. 大气温度起伏谱的测量[J]. 强激光与粒子束, 2002, 14(2): 134-139. http://www.hplpb.com.cn/article/id/1238

    Wu Xiaoqing, Wang Yingjian, Zeng Zongyong, et al. Measurement of the spectrum of atmospheric temperature fluctuations. High Power Laser and Particle Beams, 2002, 14(2): 134-139 http://www.hplpb.com.cn/article/id/1238
    [14] Pinton J F, Plaza F, Danaila L, et al. On velocity and passive scalar scaling laws in a turbulent swirling flow[J]. Physica D, 1998, 122: 187-201. doi: 10.1016/S0167-2789(98)00185-7
    [15] 饶瑞中. 光在湍流大气中的传播[M]. 合肥: 安徽科学技术出版社, 2005: 76-77.

    Rao Ruizhong. Light propagation in the turbulent atmosphere. Hefei: Anhui Science and Technology Press, 2005: 76-77
    [16] 饶瑞中, 李玉杰. 非Kolmogorov大气湍流中的光传播及其对光电工程的影响[J]. 光学学报, 2015, 35(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201505003.htm

    Rao Ruizhong, Li Yujie. Light propagation through non-Kolmogorov-type atmospheric turbulence and its effects on optical engineering. Acta Optica Sinica, 2015, 35(5): 1-11 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201505003.htm
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  345
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2019-04-14
  • 刊出日期:  2019-08-15

目录

    /

    返回文章
    返回