留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子源注入型IH加速腔冷测与调谐

赵良超 何小中 庞健 马超凡 石金水

赵良超, 何小中, 庞健, 等. 离子源注入型IH加速腔冷测与调谐[J]. 强激光与粒子束, 2019, 31: 085106. doi: 10.11884/HPLPB201931.190066
引用本文: 赵良超, 何小中, 庞健, 等. 离子源注入型IH加速腔冷测与调谐[J]. 强激光与粒子束, 2019, 31: 085106. doi: 10.11884/HPLPB201931.190066
Zhao Liangchao, He Xiaozhong, Pang Jian, et al. Cold test and cavity tuning for ion source injected IH cavity[J]. High Power Laser and Particle Beams, 2019, 31: 085106. doi: 10.11884/HPLPB201931.190066
Citation: Zhao Liangchao, He Xiaozhong, Pang Jian, et al. Cold test and cavity tuning for ion source injected IH cavity[J]. High Power Laser and Particle Beams, 2019, 31: 085106. doi: 10.11884/HPLPB201931.190066

离子源注入型IH加速腔冷测与调谐

doi: 10.11884/HPLPB201931.190066
基金项目: 

国家自然科学基金项目 11305163

详细信息
    作者简介:

    赵良超(1986-), 男, 博士研究生, 助理研究员, 从事加速器物理及加速器技术研究, 845074159@qq.com

  • 中图分类号: TL5

Cold test and cavity tuning for ion source injected IH cavity

  • 摘要: 离子源注入型IH加速器有望发展成为一种紧凑型低功耗离子加速器,为有效验证该加速结构的束流俘获效率,中国工程物理研究院流体物理研究所设计了一套将质子束从0.04 MeV加速到2.0 MeV的IH加速腔。目前已经完成了该腔的腔体加工,开展了高频参数冷测及腔体调谐研究。通过漂移管调谐和电感调谐,减小了腔体的频率误差和加速电压分布误差。模拟计算实测电场下腔体的束流俘获效率,由调谐前的16%提高到调谐后的34%。冷测调谐结果表明,该加速腔的各项参数达到设计值,具备进行功率测试和束流测试的条件。
  • 图  1  离子源注入型IH加速腔结构

    Figure  1.  Structure of ion source injected IH cavity

    图  2  加速电压误差对俘获效率的影响

    Figure  2.  Relationship between voltage error and capture efficiency

    图  3  冷测平台和所用的微扰体

    Figure  3.  Coldtest platform and perturbation object

    图  4  测量误差示意图(微扰体长4 mm)

    Figure  4.  Diagram of measurement error (perturbation cylinder length is 4 mm)

    图  5  电压的测量误差百分比与微扰体长度的关系

    Figure  5.  Relationship between voltage measurement error percentage and perturbation cylinder length

    图  6  腔体轴线上的相位分布和电场分布

    Figure  6.  Phase distribution data and field data along the axis

    图  7  调谐前的加速电压及电压误差百分比分布

    Figure  7.  Voltage and voltage error percentage distribution before field tuning

    图  8  漂移管调谐后的加速电压及电压误差百分比分布

    Figure  8.  Voltage and voltage error percentage distribution after tube tuning

    图  9  电感调谐后的加速电压及电压误差百分比分布

    Figure  9.  Voltage and voltage error percentage distribution after tuner tuning

  • [1] Ratzinger U. Commissioning of the new GSI high current linac and HIF related RF linac aspects[J]. Nuclear Instruments and Methods in Physics Research A, 2001, 464: 636-645. doi: 10.1016/S0168-9002(01)00155-3
    [2] Iwata Y, Yamada S, Murakami T, et al. Performance of a compact injector for heavy-ion medical accelerators[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 572: 1007-1021. doi: 10.1016/j.nima.2007.01.012
    [3] Wang Zhijun, He Yuan, Wu Wei, et al. Design optimization of the APF DTL in the SSC-linac[J]. Chinese Physics C, 2010, 34(10): 1639-1642. doi: 10.1088/1674-1137/34/10/017
    [4] Lu Liang, Hattori T, Zhao Huanyu, et al. High power test of an injector linac for heavy ion cancer therapy facilities[J]. Physical Review Special Topics—Accelerators and Beams, 2015, 18: 111002. doi: 10.1103/PhysRevSTAB.18.111002
    [5] Lu Liang, Hattori T, Hayashizaki N, et al. CW operationon APF-IH linac as a heavy ion implanter[J]. Nuclear Instruments and Methods in Physics Research A, 2010, 622: 485-491. doi: 10.1016/j.nima.2010.07.043
    [6] Yamamoto K, Hattori T, Hayashizaki N, et al. Proof examination of alternating phase focusing[J]. Nuclear Instruments and Methods in Physics Research B, 2005, 240: 44-47. doi: 10.1016/j.nimb.2005.06.086
    [7] Zhao Liangchao, Pang Jian, He Xiaozhong, et al. Design of alternating phase focusing Interdigital H-mode Drift-Tube-Linac with low injection energy[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 806: 75-79. doi: 10.1016/j.nima.2015.10.007
    [8] Lu Yuanrong, Ratzinger U, Schlitt B, et al. The general RF tuning for IH-DTL linear accelerators[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 582: 336-344. doi: 10.1016/j.nima.2007.08.177
    [9] Iwata Y, Fujimoto T, Miyahara N, et al. Model cavity of an alternating-phase-focused IH-DTL[J]. Nuclear Instruments and Methods in Physics Research A, 2006, 566: 256-263. doi: 10.1016/j.nima.2006.07.029
    [10] 傅世年. RFQ加速器高频测量软件和分析软件开发[J]. 高能物理与核物理, 2002, 26(7): 735-741. https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL200207013.htm

    Fu Shinian. Software development for the RF measurement and analysis of RFQ accelerator. High Energy Physics and Nuclear Physics, 2002, 26(7): 735-741 https://www.cnki.com.cn/Article/CJFDTOTAL-KNWL200207013.htm
    [11] 刘华昌, 李阿红, 彭军, 等. 漂移管直线加速器加速电场分布及稳定性调谐研究[J]. 原子能科学技术, 2017, 51(10): 1874-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201710023.htm

    Liu Huachang, Li Ahong, Peng Jun, et al. Design study on accelerating field distribution and stability tuning of drift tube linac. Atomic Energy Science and Technology, 2017, 51(10): 1874-1879 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201710023.htm
  • 加载中
图(9)
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  284
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-08
  • 修回日期:  2019-05-18
  • 刊出日期:  2019-08-15

目录

    /

    返回文章
    返回