留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KFCM增量更新的无线电引信目标识别方法

代健 郝新红 贾瑞丽 陈齐乐 刘金烨

代健, 郝新红, 贾瑞丽, 等. 基于KFCM增量更新的无线电引信目标识别方法[J]. 强激光与粒子束, 2019, 31: 063204. doi: 10.11884/HPLPB201931.190126
引用本文: 代健, 郝新红, 贾瑞丽, 等. 基于KFCM增量更新的无线电引信目标识别方法[J]. 强激光与粒子束, 2019, 31: 063204. doi: 10.11884/HPLPB201931.190126
Dai Jian, Hao Xinhong, Jia Ruili, et al. Target recognition method for radio fuze based on KFCM algorithm with incremental update[J]. High Power Laser and Particle Beams, 2019, 31: 063204. doi: 10.11884/HPLPB201931.190126
Citation: Dai Jian, Hao Xinhong, Jia Ruili, et al. Target recognition method for radio fuze based on KFCM algorithm with incremental update[J]. High Power Laser and Particle Beams, 2019, 31: 063204. doi: 10.11884/HPLPB201931.190126

基于KFCM增量更新的无线电引信目标识别方法

doi: 10.11884/HPLPB201931.190126
基金项目: 

国防“973”计划项目 613196

详细信息
    作者简介:

    代健(1994—),男,博士研究生,研究方向:智能探测与控制;646493245@qq.com

    通讯作者:

    郝新红(1974—),女,副教授,博士生导师,研究方向:智能探测与控制;haoxinhong@bit.edu.cn

  • 中图分类号: TJ434.1

Target recognition method for radio fuze based on KFCM algorithm with incremental update

  • 摘要: 针对传统无线电引信在复杂电磁环境下作用效果较差的问题,以连续波多普勒引信为例,通过对引信检波输出信号频域的分析,提出一种基于熵的特征提取方法,并利用KFCM算法对信号进行分类识别。由于实际战场环境复杂且不可预测,其背景噪声强度与实验环境下存在差异,因此结合KFCM增量更新特性,使分类模型根据噪声强度变化而实时更新调整,从而达到更好的分类效果。实验结果证明,基于增量更新KFCM算法能显著提高不同信噪比下引信目标识别能力,将KFCM增量更新算法运用到无线电引信抗干扰能取得良好效果。
  • 图  1  实测目标作用下引信检波输出频谱

    Figure  1.  Actually measured Fourier spectrum of fuze detection signal under the action of target signal

    图  2  实测噪声调幅扫频干扰下引信检波输出结果

    Figure  2.  Actually measured Fourier spectrum of fuze detection signal under the action of noise amplitude modulation frequency sweeping jamming signal

    图  3  引信检波信号频域熵3维分布

    Figure  3.  Three-dimension distribution of frequency entropy of fuze detection signal

    图  4  基于KFCM增量更新的引信检波分类流程

    Figure  4.  Process of fuze detection signal classification based on KFCM incremental update

    图  5  基于KFCM的引信检波信号分类结果

    Figure  5.  Classification result of fuze detection signal based on KFCM

    图  6  更新后的KFCM分类模型在不同信噪比下目标识别率

    Figure  6.  Target recognition accuracy of KFCM model after update at different signal-to-noise ratio

    图  7  不同更新次数下引信目标识别正确率

    Figure  7.  Classification accuracy of fuze detection signal at different update times

    表  1  KFCM算法改进前后实验结果

    Table  1.   Result before and after the improvement of KFCM

    average accuracy/% test times
    original 94.7 200
    improved 98.9 200
    下载: 导出CSV

    表  2  基于KFCM的引信目标信号识别结果

    Table  2.   Results of fuze target signal recognition based on KFCM

    SNR/ dB average accuracy/% test times
    5 99.02 200
    下载: 导出CSV

    表  3  不同更新次数下引信目标识别正确率

    Table  3.   Classification accuracy at different update times

    incremental update times average accuracy/% test times
    0(original) 81.46 200
    5 91.55 200
    20 97.23 200
    下载: 导出CSV
  • [1] 崔占忠, 宋世和, 徐立新. 近炸引信原理[M]. 3版. 北京: 北京理工大学出版社, 2009: 15-43.

    Cui Zhanzhong, Song Shihe, Xu Lixin. Principle of proximity fuze. 3rd ed. Beijing: Beijing Institute of Technology Press, 2009: 15-43
    [2] 赵惠昌. 无线电引信设计原理与方法[M]. 北京: 国防工业出版社, 2012.

    Zhao Huichang. Principle and method of radio fuze design. Beijing: National Defense Industry Press, 2012: 34-75
    [3] 李志强. 连续波多普勒无线电引信目标信号识别方法研究[D]. 北京: 北京理工大学, 2014: 7-28.

    Li Zhiqiang. On recognition of target signal for CW Doppler radio proximity fuze. Beijing: Beijing Institute of Techonolgy, 2014: 7-28
    [4] 郭云鹏, 闫晓鹏, 李泽, 等. 基于处理增益的连续波多普勒引信干扰效能分析方法[J]. 探测与控制学报, 2017, 39(5): 20-25, 30.

    Guo Yunpeng, Yan Xiaopeng, Li Ze, et al. Analysis of CW Doppler fuze jamming performance based on processing gain. Journal of Detection and Control, 2017, 39(5): 20-30
    [5] 单剑锋, 翟波. 基于小波变换的无线电引信目标识别研究[J]. 弹箭与制导学报, 2009, 29(6): 288-290. doi: 10.3969/j.issn.1673-9728.2009.06.080

    Shan Jianfeng, Zhai Bo. Wavelet based target detection for radio fuze signal. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 288-290 doi: 10.3969/j.issn.1673-9728.2009.06.080
    [6] 张彪, 闫晓鹏, 栗苹, 等. 基于支持向量机的无线电引信抗扫频式干扰研究[J]. 兵工学报, 2016, 37(4): 635-640. doi: 10.3969/j.issn.1000-1093.2016.04.009

    Zhang Biao, Yan Xiaopeng, Li Ping, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine. Acta Armamentarii, 2016, 37(4): 635-640 doi: 10.3969/j.issn.1000-1093.2016.04.009
    [7] 卢云龙, 李明, 陈洪猛, 等. 基于熵特征的DRFM有源欺骗干扰CFAR检测[J]. 系统工程与电子技术, 2016, 38(4): 732-738. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201604003.htm

    Lu Yunlong, Li Ming, Chen Hongmeng, et al. CFAR detection of DRFM deception jamming based on entropy feature. Systems Engineering and Electronics, 2016, 38(4): 732-738 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201604003.htm
    [8] Zhen J D. Pan H Y. Cheng J S. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines[J]. Mechanical Systems And Signal Processing, 2016, 85(10): 746-759.
    [9] 钟珞, 潘昊, 封筠, 等. 模式识别[M]. 武汉: 武汉大学出版社, 2006: 53-86.

    Zhong Luo, Pan Hao, Feng Yun, et al. Pattern recognition[M]. Wuhan: Wuhan University Press, 2006: 53-86
    [10] Zhang D Q, Chen S C. Clustering incomplete data using kernel-based fuzzy c-means algorithm[J]. Neural Processing Letters, 2003, 18(3): 155-162. doi: 10.1023/B:NEPL.0000011135.19145.1b
    [11] Lin K P. A novel evolutionary kernel intuitionistic fuzzy C-means clustering algorithm[J]. IEEE Trans Fuzzy Systems, 2014, 22(5): 1074-1087. doi: 10.1109/TFUZZ.2013.2280141
    [12] 吴佳. FCM聚类及其增量算法的研究[D]. 长沙: 长沙理工大学, 2011: 12-39.

    Wu Jia. FCM clustering and research of its increment algorithm. Changsha: Changsha University of Science & Technology, 2011: 12-39
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  297
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-09
  • 修回日期:  2019-04-30
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回